2.4 Анализ литературы

2.4.1 Зарубежные методы решения

Решению обратной задачи ВТК посвящен ряд работ в зарубежных изданиях. Следует отметить монографию [38], в которой рассмотрены случаи импульсного возбуждения, а оперируют в частотной и временной областях напряженностью электрического поля.

Подход к решению квазистационарных задач рассмотрен в цикле статей [45-51]. Он основан на интегральной постановке задачи с помощью функций Грина[31-34,39]. Для иллюстрации рассмотрим решение обратной задачи ВТК согласно [49].

А. Прямая задача

Определим функцию v(r)=( s(r) - s0 )/s0 , где s(r) - произвольное распределение проводимости, а s0 - ее базовая величина. Функция v(r) может представлять собой как описание произвольного распределения проводимости (в этом случае для удобства полагаем s(r)=s0 вне некоторого ОК объема V, тогда v(r) отлична от нуля только в пределах V ) так и некоторого дефекта (для трещины v(r)=-1 внутри дефекта и равна нулю вне его).

Рассмотрим систему уравнений Максвелла в предположении гармонического возбуждения exp(-jwt) и пренебрегая токами смещения:

( 2.4.1)

где P(r)=[ s(r)-s0 ]ЧE(r)=s0 Ч v(r)ЧE(r) - может интерпретироваться как плотность диполей эффективного тока, причиной которого является вариация s(r)-s0.

Решение уравнений Максвелла можно представить в виде

( 2.4.2)

где Ei(r) - возбуждающее поле, а G(r|r’) - функция Грина, удовлетворяющая уравнениюСґСґ G(r|r’)+k2Ч G(r|r’)=d(r-r’) , k2=-jЧwЧm0 Чs0 , d(r-r’) - трехмерная дельта-функция.

Импеданс ВТП можно выразить как

( 2.4.3)

где интеграл берется по измерительной катушке, J(r) - плотность тока в возбуждающей катушке. Применяя теорему взаимности импеданс можно представить через возбуждающее поле:

( 2.4.4)

где интеграл берется по объему ОК.

В. Обратная задача

Пусть v(r) - оценка истинной функции vtrue(r), Zobs(m) - измеренный импеданс ВТП в точке r0 на частоте возбуждения w , m=(r0,w) - вектор в некоторой области определения M , Z[m,v] - оценка величины Zobs(m) на основе решения прямой задачи.

Определим функционал невязки измеренных и рассчитанных значений импеданса ВТП как :

( 2.4.5)

Предположим, что для решения обратной задачи используется итерационный алгоритм типа метода спуска: vn(r)= vn-1(r)+a sn(r). Можно показать, что в случае метода наискорейшего спуска итерация имеет вид: vn(r)= vn-1(r)-aЧСF[ vn-1(r) ], где градиент функционала СF[v] можно определить как :

( 2.4.6)

где Re обозначает вещественную часть, * обозначает комплексную сопряженность.

Требуемый в (2.4.6) градиент импеданса можно определить как:

СZ(r) = -s0ЧE(r)ЧE*(r)

( 2.4.7)

где E*(r) - решение уравнения

( 2.4.8)

С. Аппроксимация при решении обратной задачи

Пусть электропроводность моделируется с помощью конечного числа переменных (например узловых значений некоторой аппроксимации), а вектор р состоит из этих переменных. Тогда выражение (2.4.7) принимает вид:

( 2.4.9)

где (СZ)j - j-ая компонента градиента импеданса.

Значение j-ой компоненты градиента невязки (2.4.6) можно представить как:

( 2.4.10)

Следует обратить внимание на то, что в случае дискретного пространства М (конечное число измерений) интеграл в (2.4.10) заменяется суммой.

С учетом приведенных преобразований итерация метода наискорейшего спуска принимает вид:

pjn = pjn-1 - aЧ(СFn-1)j

( 2.4.11)

где n - номер итерации.

D. Пример применения

В качестве примера рассмотрим функцию v(r) в виде v(r)=SciЧfi(r), i=1,N , где fi(r) - множество линейно независимых базовых функций с коэффициентами ci. Рассматривая коэффициенты ci в роли параметров аппроксимации (ci=pi) получим из (2.4.9) для компонентов градиента импеданса:

( 2.4.12)

В случае проводящего ОК, состоящего из N параллельных слоев с проводимостью sj распределение электропроводности по глубине можно представить с помощью функций Хевисайда H(z) как s(z)=S sjЧ[ H( z-zj) - H( z-zj+1) ].

Подставляя в (2.4.12) базовые функции вида fi(z)=[H( z-zj)-H( z-zj+1)], получим окончательное выражение:

( 2.4.13)

Отметим основное преимущество такого решения. Несмотря на определенную сложность вычислений при решении интегральных уравнений (2.4.2-2.4.8) для расчета градиента импеданса НВТП необходимо решить только две такие задачи.


Информация о работе «Решение обратной задачи вихретокового контроля»
Раздел: Физика
Количество знаков с пробелами: 36501
Количество таблиц: 25
Количество изображений: 1

Похожие работы

Скачать
41556
10
19

... поверхностной трещины, когда однородное (или неоднородное) поле пересекает поверхностную трещину в ферромагнитной пластине (рис.4). Рисунок 4. Поток магнитного рассеяния для двумерного случая в поперечном сечении ферромагнитной пластины Считается, что однородное магнитное поле распространяется слева направо. Вблизи дефекта поток разделяется на две части. Одна часть потока пытается обогнуть ...

Скачать
135651
12
7

... приборов и визуальные наблюдения за процессом позволяют оперативно реагировать на возможные отклонения, во многом обеспечивает качество сварных соединений. При сварке ответственных конструкций используют системы автоматического управления и регулирования параметров режима с помощью датчиков автоматического контроля, встроенных в сварочное оборудование. В некоторых случаях ведут непрерывную запись ...

Скачать
81363
4
0

... в процесс, были одобрены, спланированы, получили материально-техническую поддержку и управлять в целях заинтересованных сторон. Глава 3. Перспектива автоматизации системы неразрушающего контроля изделий на предприятиях машиностроительного профиля   3.1 Комплексная технология АУЗК В связи с высоким техническим уровнем современного производства методом и средством НК предъявляют высокие ...

Скачать
131566
7
26

... , повысить вероятность выявления дефектов и, с другой стороны, снизить различные технико-экономические затраты на проведение контроля. 2. Проектирование системы контроля знаний 2.1 Общая структура системы По своей логической структуре система состоит из трёх частей: -            подсистемы конфигурирования теста; -            подсистемы тестирования; -            подсистема сервиса. ...

0 комментариев


Наверх