7. Проводники, полупроводники и изоляторы.

Вот, имеются зоны энергии, есть последняя заполненная зона, она называется валентной зоной. Мы видели, что электроны, сидящие в заполненных зонах, вклада в проводимость не дают. Дальше вариант такой: за валентной зоной идёт пустая зона при T = 0, тело с такой структурой это изолятор. При нагревании, если запрещённая зона  не слишком велика, происходит тепловое возбуждение, и часть электронов из валентной зоны может перейти в следующую зону, зону проводимости, тогда интеграл будет отличен от нуля, и появится ток, это полупроводники. Полупроводники – это твёрдое тело, для которого ширина запрещённой зоны не слишком велика, так что при комнатных температурах число электронов, которые перейдут в зону проводимости, будет ощутимо. При понижении температуры сопротивление будет расти и при абсолютном нуле температуры полупроводник становится изолятором. Если эта запрещённая зона достаточно велика (больше некоторого условного уровня), то соответствующий металл называется изолятором. При тепловом возбуждении всё равно часть электронов переходит в зону проводимости, но их мало и заметного вклада в проводимость они не дают.

То есть с этой точки зрения изолятор это плохой полупроводник или полупроводник это плохой изолятор, качественного различия нет.

А есть, наконец, твёрдые тела, для которых нет этой запрещённой зоны, т.е. либо зона проводимости пересекается с валентной зоной, либо мы просто имеем частично заполненную зону, а следующая свободна, эти тела называются проводники и это металлы. Проводник и металл в этом контексте синонимы. В проводниках можно считать, что электроны в этой частично заполненной зоне ведут себя как идеальный фермионный газ.

Ну вот, всё. Остальное придётся прочитать в книжке, но повторяю, там идейных проблем нет, там только детали.

 


1) Вот, я слышал, математик известный придумал, что все эти временные шкалы ерунда, и вообще, мир начался где-то 300 лет назад что ли, а всё остальное – подделки, фальшивки и подтасовка фактов. Бред собачий. Тут даже не о чем говорить. Дело в том, что имеются разные временные шкалы: хроники, углеродный способ датировки и прочее – это вещи не из одного источника, это всё согласовано. Я не знаю, что должно произойти в голове, чтобы вот так зациклиться на такой бредовой идее.

2) Нет до сих пор надёжной модели, представления о возникновении солнечной системы, но, во всяком случае, как бы она там не возникла, все характеристики, которые она имела бы, это по отношению ко всему дальнейшему случайные начальные условия. Земля могла бы быть ближе к Солнцу, могла бы быть дальше, параметры орбит были бы другими. Ну, например, более-менее понятно, почему орбиты всех планет лежат приблизительно в одной плоскости, скажем, из вращающегося диска это могло образоваться, опять же это начальные условия.

1) На самом деле, там не этот аспект взаимодействия правильный, то есть классическая теория и здесь оказалась неверной. На счёт рассеяния (с синевой неба) она сработала, но по причинам, которые мы дальше увидим.

1) Если мы видим воду – это просто, ещё не успевшая испариться, вода.

1) Наглядная картина: вырыли в земле яму глубиной 3м и кинули туда узника. Высота барьера, потенциальная энергия, , и он там прыгает. Его возможности ограничены (прыгуны-рекордсмены прыгают на 2м), его кинетическая энергия, которую он может развить при прыжке, это , где h = 2м. И вот он там в этой яме прыгает, и всё, – прыгает, прыгает, а ему ещё не хватает куска в 1м. Так из этой ямы ему не выбраться никогда.

2) Не то, что есть явления, к которым неизвестно как подступиться, любому человеку можно предложить задачу, которую он не знает, как решить, это ещё не дефект науки, это сложность задачи и дефект того, кто её пытается решить. Здесь другая ситуация: проблема ясная, как её решать тоже понятно, действуем по правилам, – получаем ерунду (не то, что мы не знаем, как её решать). Это дефект теории, а не того, кто её применил.

3) Во времена Ньютона уже была гипотеза о том, что свет это есть волна, Гюйгенс в частности был её последователем, и другая, что свет есть поток частиц, то есть светящееся тело испускает какие-то частицы. В те времена нельзя было их проверить. Можно было говорить, как Гюйгенс, что это есть волны, и объяснить наблюдаемые явления, то, что называется геометрической оптикой. Преломление света и отражение одинаково хорошо и та и другая теория объясняла. Вот, когда было обнаружено явление интерференции (опыт Юнга в начале XIX века), тогда восторжествовала волновая теория. И для объяснения взаимодействия света с веществом пришлось вернуться к корпускулярным представлениям.

1) Какая масса, покоя или релятивистская, стоит в формулах? – вопрос из зала. Масса, которая стоит в этой формуле это свойство частицы. Вот у вас есть килограммовая гиря, на ней написано «1кг», как бы эта гиря тут не летала, надпись «1кг» сохраняется. Это отголоски того, что в своё время любили различать массу покоя и полную релятивистскую массу, которая вроде бы зависит от скорости. Здесь, когда я пишу m, это свойство частицы (в таблице смотрим).

2) Это не означает, что нет смысла убегать. Например, гонится за вами фотон, вы от него бежите со скоростью , он всё равно вас настигает со скоростью c, но есть смысл убегать, потому что меняется не его скорость, а меняется его импульс. Если вы будете быстро убегать, то импульс, с которым он вонзится вам в спину, будет гораздо меньше (и может быть сколь угодно малым), он вас настигнет так же быстро, как если бы вы стояли на месте, но эффект будет не тот.

1) Потому что, если бы, например, по понедельникам он вёл себя как волна, а по вторникам как частица, это была бы проблема, конечно, это бы подорвало основы науки.

2) Я даже не буду говорить тут «свет», - «объект».

3) При этом фотон должен поглотится электроном с самой большой энергией, и ещё должно оказаться так, что импульс электрона направлен наружу.

4) Дальше идут два вопроса из зала.

1) Когда сталкиваются два бильярдных шара, исход столкновения на основе законов сохранения энергии и импульса описать нельзя (иначе не было бы игры в бильярд), он ещё зависит от так называемого прицельного параметра.

1) Не на свете (для света в видимой области условие сохраняется), а наблюдалось рассеивание рентгеновских лучей на электронах, то есть на обычном атомном веществе (электрон в атоме хотя и связан, но энергия этой связи по сравнению с энергией рентгеновского фотона мала).

1) Можете поупражняться и посчитать, сколько света сваливается на Землю, если считать, что Солнце излучает изотропно.

2) Легко понять, почему заряд, движущийся с ускорением, должен излучать. Вот у вас неподвижная заряженная частица, к ней приклеено кулоновское поле, силовые линии которого расходятся до бесконечности. Начинаем дёргать заряд, понятно, что вместе с ним дёргаться это поле не может (когда я его тут сдвигаю, в удалённой точке поле не может «знать», что я его тут сдвинул), ближайшее поле сдвинулось, а на большом расстоянии поле стоит. Это означает, что происходит отрыв поля от заряда, а поле, оторвавшееся от заряда, это уже свободное электромагнитное поле, которое может находиться лишь в определённом состоянии: векторы и перпендикулярны, модули их согласованы и всё это плывёт со скоростью света.

1) Излучение не может происходить с одинаковой мощностью на всех длинах волн, в этом случае энергия была бы бесконечно велика.

2) Это привычное название, и другое, более-менее старорежимное, монохроматическая испускательная способность.

3) Механизм отражения мы рассматривали – это вторичное излучение атомов предмета.

4) Когда-то рассказ я читал, по-моему, у Джека Лондона как там были два соперника (о чём они соперничали, я уже не помню, хотя у них там сюжет всегда одинаковый), и один из них стал абсолютно чёрным, а другой стал абсолютно прозрачным. Ну, игра там какая-то была, что тот, который был абсолютно прозрачный, тоже был вроде бы невидимым, но иногда как-то бликовал на солнечном свете, а абсолютно чёрный якобы был вообще невидим. Кстати, человек-невидимка не мог бы функционировать, если бы он был бесцветным! Если бы он был действительно невидим, это означает, что он никак не взаимодействовал бы с излучением, излучение проходило бы насквозь, не взаимодействуя с ним, он бы тогда ничего и не видел (потому что мы видим за счёт того, что сетчатка глаза там как-то взаимодействует с излучением). Так что мало того, что его никто не видел бы, но и он бы никого не видел, ну, и радости, конечно, от этого не было бы никакой.

1) Нейтрино пронизывают Землю без всяких потерь, без всякого взаимодействия, это частицы, которые предельно слабо взаимодействуют с веществом, то есть какой-нибудь слой свинца толщиной от Земли до Солнца лишь в ничтожнейшей степени ослабил бы поток нейтрино. Солнце излучает мощные потоки нейтрино, частицы, сопровождающие ядерные реакции, и они нас просвечивают запросто на теневой стороне Земли и на световой стороне.

2) Напомню, эта дыра представляет собой сферическую поверхность (хотя бывают вращающиеся дыры, и поверхность не сферическая) в пространстве, куда всё валится внутрь и ничего обратно не вылетает. Недавно, кстати, слыхал, что обнаружили объект, который тянет на чёрную дыру (уже известно 20 таких объектов) массой порядка 107 солнечных масс, большая дыра. Кстати, как массу этой дыры понимать? Она создаёт гравитационное поле, вот по полю на бесконечности с помощью закона тяготения (Ньютона) определяется масса.

3) Мы сейчас с вами сидим в такой полости, так что это не какая-то хитрая вещь, мы большую часть жизни проводим в таких полостях. Только нужно было бы выключить лампы и нас отсюда вывести, потому что наша температура выше.

1) Отполируем поверхность, она будет меньше поглощать, скажем, полированный стол больше отражает, чем какая-то неполированная деревяшка.

2) Вот у вас кусок железа излучает при данной температуре, отполируйте его поверхность, его излучение изменится!

1) Если вы откроете дверцу только что протопленной печки, то увидите излучение чёрного тела. Космическое пространство всё в масштабах Вселенной заполнено равновесным электромагнитным излучением с температурой 30K, то есть с таким, с каким было бы излучение в полости с температурой стенок 30K, это так называемое реликтовое излучение, оставшееся со времён возникновения Вселенной. Если расширение будет продолжаться, температура будет падать и дальше, в конце концов до абсолютного нуля, если расширение сменится сжатием, температура будет возрастать, и весё вернётся к начальному состоянию с большими температурами.

2) Классическая физика не смогла получить разумную формулу для спектральной плотности (эта формула легко проверяется: абсолютно чёрное тело – печь, ставят спектрометр, излучение в спектр разворачивается, и для каждой полоски спектра можно найти энергию в этом интервале длин волн). Классическая физика не смогла не только дать правильное значение функции, она не смогла дать даже разумное значение, а именно, получалось, что эта функция растёт с убыванием длины волны, а это просто бессмысленно, это означает, что любое тело в видимой области излучает, а в низких частотах ещё больше, и полная энергия излучения стремится к бесконечности. Значит, в классической физике есть какие-то принципиальные дефекты.

3) Факт хорошо известный: вы можете сунуть горячий утюг в печку, изначально он будет тёмно-красного цвета, если его греть дальше, цвет будет желтеть (по мере роста температуры это дело начинает выезжать в видимую область), ну и, наконец, станет белым. Что называют белым светом? Солнце светит, как абсолютно чёрное тело, значит, спектральный состав солнечного излучения это по определению белый свет.

4) Обычные лампы накаливания это пример теплового излучения. Температура нити в лампе чуть больше 2000 градусов, можете легко посчитать на какую длину волны приходится максимум, оказывается, в инфракрасной области, то есть лампа работает неэффективно, в видимой области её излучение это несколько процентов от потребляемой мощности, в основном она действует на обогрев.

1) Это означает, что, если нет частицы, движущейся по траектории, то нет скорости, нет ускорения, не к чему применять Второй закон Ньютона, и, вообще, вся эта схема классической механики не работает.

2) Соорудить поток электронов вполне возможно: в телевизионной трубке, в электронной пушке, электроны излучаются из раскалённой нити, ускоряются электрическим полем, луч формируется, и на экране рисует картину.

3) Вместо пучка электронов можно представить поток пуль из пулемёта, щит броневой со щелью, а дальше деревянный забор регистрирует попадания пуль, понятно, что они будут рассеиваться, проходя через эту щель.

1) На рис.1.c точка отмечена крестиком

1) Так сказать, пока частица не обнаружилась где-то, Господь Бог, понимая под этим существо, которое знает всё, что можно знать, он не знает, где она будет обнаружена, он тоже может оперировать только вероятностью. В рамках этой же метафоры Господь Бог-то знает, где молекулы воздуха летают, это мы не знаем, но он знает, потому что, в принципе, можно за ними следить и можно знать, где какая из них. А где будет обнаружена частица, описываемая волновой функцией, это и Господь Бог не знает. Вот такая ситуация. Разные аспекты этого дела ещё проявятся более занимательным образом.

2) Это довольно тонкая вещь. Язык это наше произведение, он развился в процессе общения, всё ли существующее в мире можно сформулировать на языке? Могут быть вещи, которым у нас, вообще, и слов нет, мы о них не можем задуматься, но это другая проблема. Но то, в квантовой механике обнаружилось, в общем, это очень сильно повлияло в общефилософском плане на наше представление о том, какие высказывания разумны, а какие высказывания бессмысленны.

1) Почему мы считаем, что уравнения Максвелла справедливы? Потому что работает теория: радиоприёмники говорят, телевизоры картинку показывают, и, вообще, всё, что называется электричеством, железно из этих уравнений следует.

1) В чём состоит функционирование физика? Он должен уметь слова обычного языка переводить в какие-то математические формулы, вот и всё. Допустим, человек обычным языком описывает проблему, а специалист должен будет потом, зная законы природы, сказать, что будет. Так вот, специалист должен будет перевести эту, может быть, и несвязанную речь на язык математики. На этом функция физика кончается, потому что, как только он перевёл, он может пойти к знакомому математику и дать ему математическую проблему и сказать, вот решай. Математик его не будет спрашивать, что такое буква Ψ, буква t, математику важно знать, что это некоторая функция от переменных x, y, z, ему не надо знать, что эти переменные представляют. Математик это всё продолбит и даст решение, не понимая, что всё это означает. Дальше, опять физик может это проинтерпретировать. Значит, физик работает только на стадии перевода. Но такого разделения труда между физиками и математиками нет, и физикам всегда приходится работать по совместительству математиками, более того, математика в XVIII, XIX веке развивалась в основном физиками, потому что проблемы брались из физики. Вклад чистых математиков в эту науку оказался удивительным, и при случае, если не забуду, я об этом поговорю.

2) Чем замечательны экспоненты – их дифференцировать приятно.

3) Есть рецепт дивергенции от произведения скалярной функции на вектор: , так как .

1) Луи де Бройль, кстати, недавно умер, хотя это придумал в 20-х годах. Он из королевской семьи, это один из последних Бурбонов.

1) В классической физике тоже понималось, что, когда мы наблюдаем объект, то мы с ним взаимодействуем: надо объект осветить и смотреть, по крайней мере, отражённый свет. Но в классической физике считалось, что это взаимодействие можно сделать настолько малым, что оно не меняет состояния объекта, но это оказалось большим заблуждением: в области атомных масштабов наблюдение нельзя сделать таким, чтобы оно не меняло состояния объекта. Наблюдение само по себе это вовсе не невинное дело: когда мы взаимодействуем с объектом в атомных масштабах, его состояние меняется.

2) Мы обсуждали в своё время разрешающую способность оптических инструментов, к сожалению, на экзамене я убедился, что многие эту вещь проигнорировали. Совершенно дифракционное явление: в микроскоп мы можем разрешить две близкие точки, то есть воспринять их как две различные точки, если расстояние между ними не меньше длины волны. Длина волны света, который используется в микроскопе, определяет разрешающую способность.

1) Любая реальная волна, согласно теореме Фурье, может быть представлена как суперпозиция монохроматических волн с различными амплитудами и частотами ω в некотором интервале Δω. Суперпозицию волн, мало отличающихся друг от друга по частотам , называют волновым пакетом или группой волн. //И.Е. Иродов. Волновые процессы. М.1999. стр. 223.

2) Простейший наглядный пример – звуковая волна. Кто-нибудь издаст сейчас кратковременный вопль, и побежит звуковая волна длиной , где τ – длительность вопля. Кстати, если длительность вопля полсекунды, то длина этого пакета будет 150м. И побежит такое возмущение длиной 150м, оно, конечно, не монохроматическое, там уже появится целый спектр частот, и чем кратковременнее вопль, тем больший набор частот требуется для этого.

1) Поясним эту формулу на примере суперпозиции двух волн с одинаковой амплитудой и несколько отличными друг от друга длинами волн (и частотами). На рис.3.2, а показано их относительное расположение в некоторый момент времени, а на рис.3.2, б – результат их суперпозиции. Нас будет интересовать скорость, с которой перемещается место с максимальной амплитудой – это и будет скорость волнового пакета – групповая скорость.

//И.Е. Иродов. Волновые процессы. М.1999. стр.224.

1) Наглядный пример. Приходилось, наверное, наблюдать забеги на длинные дистанции. Вот группа бегунов стартует, эта компактная куча начинает бежать. Отдельный бегун – это отдельная синусоидальная составляющая. Потом, поскольку бегуны все разные, бегут с разными скоростями, это начинает размазываться: сначала бегут компактной группой, потом эта группа разбивается, потом, вообще, оказывается, один на круг отстаёт, и всё начинает путаться. Вот расплывание пакета.

2) Теперь понятно, почему существует классическая механика, почему она оказалась правильной. Например, масса пули m=10-2, допустим центр масс пули был локализован в интервале Δx0=10-5м. На сколько увеличится неопределённость в координате пули за какое-то время? Δx~10-27t. За сутки полёта пули (t=10-5) мы получим Δx~10-22. 10-10 – размер атома водорода. Потому-то пули и летают как компактные объекты, потому что у них масса достаточная, потому и справедлива классическая механика. Если мы в формулу подставим массу электрона me~10-30, то мы видим, что для электрона волновой пакет мгновенно расплывается, и его координата сразу теряется через относительно короткое время.

1) Можно жидкость, например, нагреть в обычных условиях до температуры выше 100о, и она не будит кипеть, если греть очень чистую жидкость без всяких примесей, греть осторожно. Кстати, если потом эту кастрюлю с такой жидкостью немножко тряхнуть, она взрывается, она мгновенно испаряется. Точно так же можно аккуратно охлаждать водяной пар в чистом воздухе до состояния с температурами ниже той, при которой он должен был бы сконденсироваться и превратиться в воду и даже в лёд.

1) Понятно, что вовсе не всякая функция представляется в таком виде, скажем, не всякая функция f(x, y) представляется в виде g(x)h(y), поэтому, если мы найдём такие решения, то это будут какие-то специальные решения.

1) Немедленно вопрос может возникнуть, почему планеты вращаются вокруг Солнца? Мы детально не обсуждали, как выглядит настоящая полевая теория для гравитационного поля, но, когда Земля вращается вокруг Солнца, то поле должно меняться синхронно, а поскольку синхронно меняться не может, то должны излучаться гравитационные волны. Почему тогда Земля не падает на Солнце? Ответ простой – мощность мала. Волны излучается, энергия уносится, но гравитационное взаимодействие примерно на 40 порядков слабее электромагнитного, это самое слабое взаимодействие. Энергия уносимая волнами просто очень мала, и, скажем, Земля за 4 млрд. лет, сколько она существует, сделала 4 млрд. оборотов, но приблизилась к Солнцу ничтожно мало.

1) Если кинетическая энергия электрона меньше, чем работа по преодолению тормозящего поля, то налетающий электрон внутри останавливается и выбрасывается обратно. Это по здравым представлениям, ну, и по классической физике. Посмотрим, что даёт наша теория.

2) Непрерывность гарантирует, что вероятность не прыгает резко при малом смещении, то есть вероятность меняется непрерывно.

1) Вот, кстати, на счёт предела в рекордах. Вы, наверное, анализ изучали, там сказано, что всякая монотонная ограниченная последовательность имеет предел. Когда я был на вашем месте, как только услыхал такую теорему, меня пронзило – это означает, что любые рекорды имеют предел. Рост рекордов в прыжках, в беге это заведомо ограниченная последовательность, стало быть, есть предел, то есть когда-то все эти спортивные соревнования упрутся в смысле рекордов. Конечно, прыгать можно всегда, потому что это личные соревнования, но рекорды расти перестанут. Такая вот эта теорема.

2) Если бы человек выскочил из ямы, так сказать, прыгнул выше головы, то нарушился бы закон сохранения энергии (у него нет энергии, чтобы подскочить на 3м). Но если он оказывается за стеной, его энергия в начальном состоянии и в конечном одна и та же, просто произошло действие, несколько запрещённое с точки зрения классической физики, но нарушения закона сохранения энергии нет.

3) Если бы не было туннельного эффекта, то с электричеством было бы не так просто. Это означает, что вы должны были бы, например, провода, ведущие к вашему чайнику, впаять в него, а другие два конца привести на электростанцию и впаять туда, чтобы было сплошное металлическое тело. Просто при механическом контакте ток не потёк бы, если б не было туннельного эффекта.

1) Земля, движущаяся вокруг солнца, находится в связанном состоянии, камни, которые мы на земле можем наблюдать, - в связанном состоянии (они не могут уйти на бесконечность). В этом смысле все окружающие нас объекты в пределах солнечной системы это частицы в связанном состоянии. Единственные объекты, которые отражают несвязанные состояния, это два американских аппарата, которые были запущены лет пятнадцать назад

2) Когда переменная принимает определённые значения (счётное множество дискретных значений), говорят, что эта переменная квантуется.

3) Строго говоря, если быть очень аккуратным, при измерении энергии могут быть получены лишь определённые значения. Это важный нюанс. Квантовая теория не считает, что объект обладает какой-то характеристикой сам по себе, пока мы не пытаемся её измерить. Вот когда мы измеряем ту или иную характеристику, она появляется. Этому есть экспериментальное подтверждение. Если объект имеет сам по себе какие-то характеристики, то можно привести примеры, когда в определённых ситуациях будут получаться определённые следствия, а если он не обладает сам по себе, тогда следствия в тех же ситуациях будут другими. Это положение теории, очень интригующее, неоднократно проверялось – если мы будем считать, что система обладает сама по себе какой-то характеристикой, то из этого можно получить следствия, противоречащие наблюдаемому в действительности. Значит, при измерении энергии могут быть получены лишь определённые значения.

1) Вот сейчас кто-нибудь снаружи дверь закроет на ключ, и мы все в связанном состоянии. И будем рассматривать нас тут сейчас с точки зрения квантовой теории.

1) Напомню постулат Бора. Электрон, который вращается вокруг ядра должен излучать электромагнитные волны, терять энергию и упасть на ядро. Каким образом эта проблема была решена Бором для атома водорода (вы в школе Боровскую модель атома водорода изучали)? Простым. Он постулировал, что есть такие орбиты, на которых электрон не излучает, то есть он там крутится и не излучает. Как это стыковалось с наукой? А никак. В электродинамике известно, что если он крутится – должен излучать, а Бор говорит – не излучает. Понятно, что это не решение проблемы. Как теория эту проблему решила, мы уже сейчас знаем: в стационарных состояниях пространственная конфигурация не меняется, она застывшая (это было видно из решения уравнения Шрёдингера), динамические характеристики есть, импульс, момент импульса, но кинематики нет; распределение вероятности электронов в той или иной точке статично, ему соответствует статичное распределение заряда, а статичное распределение заряда ничего не излучает. Вот таким образом утверждение Бора получается не в виде постулата, а как следствие теории, и электродинамика не страдает – нет никакого вращения.

2) Для сравнения, с точки зрения математики, что такое классическая Ньютоновская механика? Теория дифференциальных уравнений второго порядка (Второй закон Ньютона это дифференциальное уравнение второго порядка). Было такое представление, что Господь Бог в своём всеведении додумался до теории дифференциальных уравнений второго порядка и устроил мир предметный, описываемый этими уравнениями. Когда Кеплер установил свой Первый закон, что планеты движутся по эллипсам, у него было точное ощущение, что он проник в замысел создателя; теория конических сечений была самая развитая и любимая наука ещё с античности, и когда Кеплер обнаружил, что планеты движутся по эллипсам (по коническим сечениям), оказалось, что создатель тоже знал теорию конических сечений и устроил там на небе всю эту замечательную вещь именно таким образом. Мы сейчас увидим, если продолжать эту метафору, что создатель продвинулся ещё и дальше в своём математическом образовании.

3) Звёздочка обозначает комплексное сопряжение.

1) Мы можем иметь два вектора и , это столбцы, α и β это числа. Мы можем вектор умножить на α, получим новый вектор, умножить на β, получим новый вектор, взять их сумму (сумма двух матриц-столбцов опять будет матрица-столбец), на то что получится подействовать оператором , мы получим какой-то вектор. А можем сделать иначе: возьмём оператором подействуем на вектор , получим вектор, умножим его на число α, потом оператором подействуем на вектор , получим новый вектор, умножим его на число β и сложим. Если мы получим в результате то же, что и в предыдущем случае, то оператор называется линейным.

1) Чтобы было понятно о чём речь. Я взял с потолка матрицу , она представляет оператор , после этого я эту матрицу изуродовал: взял её транспонировал и заменил каждый элемент комплексно сопряжённым к этому элементу. И оказалось, что так изуродованная матрица совпадает с исходной матрицей. Тогда мы получим тот же самый оператор (замечательный оператор, потому что в результате таких манипуляций не всякая матрица перейдёт в себя), который называется эрмитовым или самосопряжённым.

2) Когда оператор действует на какой-то вектор, он его переводит в другой вектор, но, если нам удалось подсунуть оператору такой вектор , что при действии на него оператор даёт тот же самый вектор, умноженный на число, то вот этот, конечно, чем-то замечательный вектор, называется собственным вектором.

3) Осознать надо о чём речь. В любой физической теории задать состояние это значит дать на столько полное описание объекта в рамках данной теории, чтоб дальше можно было ответить на все физически разумные вопросы относительно этого объёкта и предсказать, как это состояние будет эволюционировать. Например, как дать исчерпывающее описание летящей пули? Надо задать её положение и импульс, исходя из этого, можно узнать момент импульса, энергию, можно узнать, как это состояние будет дальше меняться, потому что есть Второй закон Ньютона для этого. «Нет, - говорит квантовая теория, - ты мне задай некий вектор в абстрактном пространстве». Как задать? Дальше нам придётся разобраться, как это делать.

1) Это существенно. Физика ограничивается обсуждением лишь тех величин, которые подлежат измерению, поэтому все её утверждения можно проверить, а утверждения, которые принципиально нельзя проверить (в частности, это утверждения о величинах, которые нельзя измерить), все такие утверждения с точки зрения физики являются бессмысленными, не ошибочными, а бессмысленными. Действительно, это пустая болтовня, если высказывание нельзя проверить в принципе, то чего сотрясать воздух. В окружающем нас языке море высказываний, которые нас окружают на обычном житейском уровне, на самом деле 90% высказываний не проверяемы. Тогда, что же те, кто их произносит, валяют дурака? Нет, они преследуют другую цель, понятно какую – с помощью всех этих высказываний добиться от объекта, на который они направлены, определённого поведения. Физика это островок, где все высказывания осмысленны, проверяемы и прочее, а 90% речевых потоков одного персонажа на другой, они преследуют цель сделать из того, чего я хочу. И тут о высказываниях бессмысленно судить с точки зрения истинности – неистинности, это другая песня совершенно. Они должны судиться по другому критерию: достигают они цели или нет, короче говоря, успешно я навешал лапшу на уши ему или нет. Если, допустим, я вешал, вешал, а он не поддаётся, то да, я валял дурака, а если я добился нужного поведения, то я занимался разумной осмысленной деятельностью. Эти вещи полезно понимать, для того, например, чтобы не ввязываться в бессмысленные споры. Пытаясь оценивать все эти вещи с точки зрения истинности – ложности, справедливости – несправедливости, скорее сами поддаёмся.

1) Проблема какая? У нас летит пуля, а нам надо в абстрактном пространстве придумать вектор, который соответствует вот этой конкретной пуле. Как вообще задать вектор в обычном пространстве? Вот вектор – стрелка, я представляю, как сообщить по телефону, что вот у меня тут вектор передо мной. Вектор задаётся в нормальном пространстве тройкой чисел, где взять три числа? Если у нас есть базисные векторы, то любой вектор задаётся тремя числами. Как задать базис, как сообщить по телефону базис? На базис можно лишь указать пальцем, вот в реальном пространстве мы должны выбрать три вектора, тогда любой другой задаётся, можно и по телефону передать базис. Можно сказать: «Возьми камушек, подвесь на нитке, тогда вектор, идущий из камушка вдоль нитки, это будет вектор , потом возьми компас, и единичный вектор в направлении синего конца стрелки это будет вектор , а потом построй вектор перпендикулярно по правилу правого винта это будет вектор ». После этого сообщаете три числа, и он там у себя слепил вектор, который вы видите перед собой. В абстрактном пространстве нет отвесов, нет компасов, нет ничего. Как там задать базис? Есть способ. В качестве базиса мы можем выбрать собственные векторы какого-либо оператора.

1) действует, и получается «ку-ку».

2) Когда символ q сидит под скобками – это просто метка, а q перед вектором – это число, то есть векторы помечены собственными значениями.

3) Действуем оператором на некоторый вектор, мы получим какой-то вектор, на этот вектор действуем оператором , мы получим новый вектор. Оказывается, можно подобрать такой оператор, который подействует на исходный вектор и даст то же, что дают два оператора и .

4) В житейском плане: оператор – одеть пиджак, оператор – одеть пальто, понятно, что эти операторы не коммутируют, а оператор – одеть шапку, оператор – одеть ботинки, они коммутируют, понятно, результат один и тот же, в какой последовательности ни выполняй.

1) Единичный оператор – это такой оператор, который любой вектор переводит в себя: .

2) Так следует из этой теории, а что касается физики, то действительно нет никаких указаний на то, что координаты квантуются. Хотя идеи о том, что пространство и время могут квантоваться, были и, может быть, ещё остаются, но пока никаких указаний на это нет. Вполне могло бы быть, что пространство ячеистое, но ещё раз повторяю пока в казённой теории координаты не квантуются, и, в общем-то, нет особой потребности в модификации этой теории.

1) Мы сейчас пролезли в это абстрактное пространство, где живут векторы и операторы. Мы изобразили вектор для определённого физического состояния: изготовили частицу с импульсом и энергией E, и мы для неё нарисовали вектор в абстрактном пространстве.

2) А теперь мы думаем, что получится, когда оператором действуем на вектор . Дело в том, что – это собственные векторы оператора , и при его действии получится тот же самый вектор, но выскочит собственное значение: .

3) Здесь не так просто: мы не знаем, как действует оператор на вектор . Но можно показать из того, что , верно следующее равенство.

1) Конечно, вопрос сразу может возникнуть, как понимать функцию от оператора? В конце концов, всякая функция выражается степенными рядами, например , а оператор при действии на вектор даст: , короче, алгебраические действия над операторами известны.

1) Проверка: , , подставляя это в уравнение, мы получим, что .

1) Кстати, ответ на этот вопрос вы уже можете знать только на основании того, что мы уже здесь обсуждали (вот, если вы удерживаете в голове всю цепочку, то ответ можно дать). У нас было коммутационное соотношение , из этого математического факта следовало, что координата не квантуется, ну и импульс, надо ожидать, не будет квантоваться, потому что буквы и равноправны.

1) Что даст скалярное произведение собственного вектора оператора координаты с собственным вектором оператора импульса?

 

Тогда другой вопрос: скалярное произведение двух собственных векторов оператора импульса. Ответ, он ясен заранее, если это разные векторы, то их скалярное произведение должно равняться нулю (собственные векторы ортогональны), посмотрим, как это сработает. Сначала , вектор сопряжённый (кстати, нельзя сказать, чему равен этот вектор, это просто разложение по координате). Тогда мы имеем: , а теперь факт математический: , и , где . Мораль какая? Если не совпадает с , то скалярное произведение , они ортогональны. При этом мы убили ещё одного зайца – мы нашли нормировочную константу C. Итак, .

1) Это интересное чисто математическое следствие, но у нас нет времени, и я просто приведу результат.

1) Наглядно предметы, показывающие магнитный момент – стрелка компаса. Почему стрелка компаса показывает на север? Потому что магнитный момент ориентируется вдоль силовой линии. Если мы имеем магнит с такими силовыми линиями, то магнитный момент (стрелка компаса) ориентируется вдоль силовой линии, и на неё будет действовать сила , втягивающая её в область с большей индукцией.

2) Ось z задаёт направление поля, а , потому что поле неоднородно. Эта сила будет тем больше, чем больше проекция магнитного момента на направление поля.

1) Если представить себе, что энергетическая яма это дом, который мы заселяем фермионами, то каждый фермион занимает одну квартиру и никого туда уже не пускает, бозоны же наоборот – заходит бозон в квартиру, а там уже живут другие бозоны, они ему: “О, друг! Заходи к нам…”.

1) Для частицы в ящике мы требовали, чтобы волновая функция обращалась в ноль вне ящика, т.е. стенки ящика были непроницаемы. Это действительно соответствовало сути дела, но удобнее, однако, оперировать функциями такого вида, но тогда меняются граничные условия. Вместо того, чтобы функция занулялась на стенках ящика, накладывается условие периодичности: волновая функция на противоположных гранях принимает одно и то же значение. Может показаться, что это условие слишком надумано, потому что, когда волновая функция зануляется на стенках, это физике соответствует, а условие периодичности никакой физике не соответствует, но оно удобно математически. Такую смену граничных условий физика терпит. Объём растёт как куб линейных размеров, а поверхность растёт как квадрат линейных размеров, поэтому, чем больше объём, тем меньше вклад поверхности в свойства начинки этого объёма. Например, мы рассматривали частицу в кубическом ящике, а если она не в кубическом ящике, а в чайнике с носиком и пр. Математически невозможно задать граничное условие зануления на такой сложной поверхности, счастье в том, повторяю, что результат не зависит ни от вида поверхности, ни от точного вида граничных условий, именно потому, что вклад граничных условий для начинки достаточно больших объёмов не существен. Поэтому мы можем делать граничные условия так, как нам удобно, а удобно делать так.

1) Доказывать это я не буду, приведу только одномерный вариант этого дела.

Если , т.е. если функция f периодическая с периодом a, то .


Информация о работе «Владимира Иннокентьевича Бабецкого (3 семестр)»
Раздел: Физика
Количество знаков с пробелами: 170768
Количество таблиц: 0
Количество изображений: 35

0 комментариев


Наверх