3.3. Представление о путях синтеза и распада сфинголипидов

Сфинголипиды, подобно глицерофосфолипидам, не являются незаменимыми компонентами пищи и могут синтезироваться из других соединений. Для их синтеза нужен в первую очередь сфингозин, который образуется в ходе нескольких последовательных реакций из пальмитоил-КоА и серина; необходимы активированные жирные кислоты в виде ацил-КоА-производных; необходимы также или активированный холин в виде ЦДФ-холина для синтеза сфингомиелинов, или активированные мономеры углеводной природы в виде их УДФ-производных для синтеза цереброзидов или ганглиозидов.

При синтезе ганглиозидов активированной формой сиаловой кислоты является ее ЦДФ-производное.

Расщепление сфинголипидов в клетках происходит в лизосомах при участии имеющихся в этих органеллах различных кислых лизосомальных гидролаз. Углеводные компоненты гликосфинголипидов расщепляются при участии различных лизосомальных гликозидаз. Сфингомиелин расщепляется на церамид и фосфорилхолин при участии сфингомиелиназы. Образовавшийся же при деградации различных сфинголипидов церамид гидролизуется при участии церамидазы на сфингозин и высшую жирную кислоту. Продукты деградации поступают из лизосом в цитозоль, где они могут использоваться в биосинтезах или расщепляться до конечных продуктов.

3.4. Обмен холестерола

Суточная потребность человека в холестероле составляет около 1г, причем вся потребность в этом соединении может быть удовлетворена за счет его эндогенного синтеза. В то же время экзогенный, т.е. пищевой, холестерол также эффективно усваивается организмом. У здорового человека поступление холестерола с пищей и его эндогенный синтез хорошо сбалансированы. Так, поступление 2-3 г холестерола с пищей почти полностью тормозит эндогенный синтез; вместе с тем его полное отсутствие в пище приводит к тому, что в сутки в организме будет синтезироваться около 1 г холестерола. Основным органом, в котором идет синтез холестерола, является печень. В печени синтезируется от 50% до 80% эндогенного холестерола, от 10% до 15% холестерола синтезируется в клетках кишечника, около 5% образуется в коже. Объем синтеза холестерола в других органах и тканях незначителен, хотя ферментные системы, обеспечивающие синтез этого соединения, присутствуют в клетках большинства органов и тканей. В условиях обычного пищевого рациона во внутреннюю среду организма поступает около 300 мг экзогенного холестерола, а 500 700 мг холестерола организм получает за счет его эндогенного синтеза.

Общее содержание холестерола в организме составляет около 140 г. Основная масса этого соединения включена в состав клеточных мембран. Однако около 10 г холестерола постоянно находится в плазме крови, входя в состав ее липопротеидов. Концентрация холестерола в плазме крови составляет 3,5-6,8 мМ/л. причем примерно 2/3 всего холестерола плазмы крови представлены в ней в виде стероидояПв - сложных эфиров холестерола и высших жирных кислот, преимущественно линолевой и олеиновой. Избыток холестерола в клетках также запасается в виде эфиров олеиновой кислоты. тогда как в состав мембран входит свободный холестерол.

Холестерол используется в организме для синтеза желчных кислот, из него также синтезируются стероидные гормоны, в коже из 7-дегидрохолестерола под действием ультрафиолетовой радиации образуется витамин Д.Избыток холестерола выводится из оргаяПнизмаяП с желчью; по-видимому, часть избыточного холестерола может

поступать в просвет кишечника непосредственно из его стенки. Таким образом, холестериновый гомеостаз в организме есть результат динамического равновесия, во-первых, процессов его поступления в организм и эндогенного синтеза и, во-вторых, процессов использования холестерола для нужд клеток и его выведения из организма.

Холестерол синтезируется в клетках из двухуглеродных группировок ацетил-КоА. Процесс синтеза холестерола включает в себя порядка 35 последовательных энзиматических реакций и может быть разбит на 5 этапов:

а) образование из ацетил-КоА мевалоновой кислоты;

б) образование из мевалоновой кислотой активированных пятиуглеродных группировок - изопентенилпирофосфата и диметилаллилпирофосфата ( активных изопреноидных группировок);

в) конденсация изопреноидных группировок с образованием сквалена;

г) циклизация сквалена в ланостерин;

д) преобразование ланостерина в холестерол.

На втором этапе мевалоновая кислота в результате ряда последовательных превращений, включающих в себя три реакции фосфорилирования и декарбоксилирование, преобразуется в изопентенилпирофосфат (ИППФ), а последний может изомеризоваться в диметилаллилпирофосфат(ДМАПФ):

На третьем этапе из активных изопреноидных единиц ИППФ и ДМАПФ путем последовательной конденсации образуется сквален, имеющий в своей структуре 30 атомов "C":

На четвертом этапе идет циклизация сквалена в соединение стероидной природы ланостерин, имеющий в своем составе 30 атомов углерода и на заключительном пятом этапе ланостерин, теряя три атома углерода, превращается в холестерол - циклический ненасыщенный спирт с 27 атомами "C" и стерановым ядром:

Следует отметить, что некоторые промежуточные продукты этого метаболического пути используются для синтеза других соединений. Так, фарнезилпирофосфат используется в клетках для синтеза коэнзима Q, необходимого для работы главной дыхательной цепи митохондрий, или долихола, принимающего участие в синтезе гетероолигосахаридных компонентов гликопротеидов.

Ключевая роль в регуляции синтеза холестерола в клетках принадлежит ферменту ГМГ-КоА-редуктазе. При повышении содержания холестерола в клетке, вне зависимости от того, синтезирован он в данной клетке или поступил в клетку извне, происходит снижение ГМГ-КоА-редуктазной активности в клетке. Установлено, что в данном случае речь не идет о прямом влиянии холестерола на активность фермента, в основе ингибирующего эффекта лежат другие механизмы. В литературе обсуждается несколько вариантов этих механизмов.

Во-первых, известно, что ГМГ-КоА-редуктаза встроена в мембраны эндоплазматической сети, в связи с чем накопление холестерола в этих мембранах может привести к конформационным изменениям мембраны, а, следовательно, и к изменению конформации фермента, понижающему его активность.

Во-вторых, установлено, что накопление холестерола в клетке приводит к увеличению содержания в ней гидроксипроиз водных холестерола, последние в комплексе с белком-переносчиком проникают в ядро и там угнетают транскрипцию гена, отвественного за синтез ГМГ-КоА-редуктазы. Угнетение транскрипции гена приводит к снижению количества фермента в клетке и торможению синтеза холестерола.

В третьих, предполагают, что активность ГМГ-КоА-редуктазы может регулироваться путем фосфорилирования - дефосфорилирования фермента при участии цАМФ-зависимой пртеинкиназы и фосфопротеинфосфатазы, однако в последнем случае речь идет не о внутриклеточной регуляции синтеза холестерола, а об изменение активности фермента в ответ на внешний регуляторный сигнал, например в ответ на появление в окружающей среде того или иного гормона.

Еще одним участком регуляции является превращение сквалена в ланостерин. Избыток холестерола в клетке снижает скорость этого превращения, но механизм регуляторного эффекта пока еще не выяснен.


Информация о работе «Обмен липидов»
Раздел: Медицина, здоровье
Количество знаков с пробелами: 125886
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
83846
5
0

... , оранжевыми миндалинами и аккумуляцией эфиров ХС в других ретикулоэндотелиальных тканях. Патология связана с ускоренным катаболизмом апо А-I [8, 2000]. Переваривание и всасывание липидов.   Желчь. Значение.  На заре формирования современного учения о внешнесекреторной функции печени, когда естествоиспытатели располагали лишь первыми ...

Скачать
33533
1
0

... . Динамика химических превращений, происходящих в клетках, изучается биологической химией. Задачей физиологии является определение общих затрат веществ и энергии организмом и того, как они должны восполняться с помощью полноценного питания. Энергетический обмен служит показателем общего состояния и физиологической активности организма. Единица измерения энергии, обычно применяемая в биологии и ...

Скачать
20104
1
0

... кислоты, которые относят к незаменимым жирным кислотам (линолевая, линоленовая, арахидоновая), которые не синтезируются у человека и животных. С жирами в организм поступает комплекс биологически активных веществ: фосфолипиды, стерины. Триацилглицеролы – основная их функция – запасание липидов. Они находятся в цитозоле в виде мелкодисперсных эмульгированных маслянистых капелек. Сложные жиры : ...

Скачать
22113
1
1

... α,d – глюкоза  глюкозо – 6 – фосфат С образованием глюкозо – 6 – фосфата пути гликолиза и гликогенолиза совпадают. Глюкозо – 6 – фосфат занимает ключевое место в обмене углеводов. Он вступает в следующие метаболические пути: глюкозо – 6 – фосфат глюкоза + Н3РО4  фруктозо – 6 – фосфат пентозный путь распада (поступает в кровь и др. ...

0 комментариев


Наверх