4.2. Регуляция обмена липидов на уровне организма

Липиды выполняют множество функций в организме, одной из важнейших среди них является обеспечение клеток различных органов и тканей энергией, т.к. от 30% до 40% всей необходимой ему энергии человек получает за счет окислительного расщепления соединений липидной природы. Интенсивность и направленность различных превращений липидов должны соответствовать потребности организма в энергетическом и пластическом материале. Поэтому крайне важными становятся как вопросы регуляции обмена липидов на уровне организма, так и проблема координации функционирования метаболических путей обмена липидов и метаболических путей обмена соединений других классов, обеспечивающих снабжение клеток необходимой им энергией. В конечном итоге, эффективная работа регуляторных и координирующих механизмов обеспечивает адаптацию организма к изменяющимся условиям его существования.

Так, в постабсорбционном периоде, когда поступление глюкозы и экзогенных липидов из кишечника во внутреннюю среду организма прекращается, потребность организма в энергии покрывается за счет расщепления резервных триглицеридов, основная масса которых сосредоточена в жировой ткани. В ходе мобилизация резервных триглицеридов образуются высшие жирные кислоты и глицерол, которые поступают из липоцитов вначале в кровь, а затем в клетки различных органов и тканей, где и окисляются с выделением необходимой клеткам энергии.

Этот процесс мобилизация резервных триглицеридов или липолиз стимулируется рядом гормонов, к числу которых относятся адреналин, норадреналин, глюкагон, b-липотропный гормон гипофиза, соматотропин, АКТГ, МСГ, кортизол, тироксин, тестостерон. Многие из этих гормонов являются активаторами гормон-чувствительной липазы липоцитов (триацилглицероллипазы). Для оптимального протекания большинства липолитических процессов необходимо присутствие кортизола, соматотропина и гормонов щитовидной железы. Сами по себе эти гормоны не оказывают прямого влияния на липолиз, а действуют как факторы, стимулирующие действие других гормонов.

Важнейшая роль в мобилизации резервных липидов в организме человека принадлежит адреналину ( вместе с норадреналином ), который выделяется в жировой ткани нервными окончаниями симпатической нервной системы. Вторым источником адреналина является мозговое вещество надпочечников, откуда адреналин доставляется в жировую ткань с током крови. Вероятно, адреналин из мозгового вещества надпочечников играет важную роль в мобилизации триглицеридов жировой ткани в условиях острого эмоционального стресса.

Адреналин взаимодействует со своим рецептором на наружной поверхности мембраны липоцита с образованием гормон-рецепторного комплекса. В ответ на образование гормон-рецепторного комплекса с помощью специального механизма происходит активация расположенной на внутренней поверхности наружной клеточной мембраны липоцита аденилатциклазы - фермента, синтезирующего из АТФ циклическую АМФ (цАМФ). Увеличение внутриклеточной концентрации цАМФ активирует фермент протеинкиназу, которая осуществляет активацию триацилглицероллипазы путем ее фосфорилирования, т.е. путем ковалентной модификации фермента. Поскольку скорость липолиза лимитируется активностью триацилглицероллипазы, активация фермента приводит к ускорению гидролиза резервных триглицеридов и увеличению выхода высших жирных кислот и глицерола из липоцита в русло крови.

Гормоны глюкагон, b-липотропин, меланоцитстимулирующий гормон, кортикотропин активируют липолиз в жировой ткани, увеличивая концентрацию цАМФ в липоцитах с помощью механизма, сходного с механизмом активации липолиза под действием адреналина. Интересно, что существуют видовые различия в эффективности функционирования этих регуляторных механизмов: так, у птиц глюкагон является мощным стимулятором липолиза, тогда как липолитический эффект глюкагона у человека крайне незначителен.

Соматотропный гормон не оказывает прямого влияния на скорость расщепления триглицеридов в липоцитах, однако соматотропин увеличивает скорость синтеза аденилатциклазы за счет ускорения процесса транскрипции соответствующего гена. Увеличение содержания аденилатциклазы в липоцитах увеличивает эффект воздействия на жировую ткань таких гормонов как адреналин, b-липотропин и др.

Сходным образом оказывает стимулирующее влияние на липолиз и кортизол, поскольку этот гормон увеличивает содержание в липоцитах другого фермента - гормон-чувствительной липазы. Кортизол выступает в качестве стимулятора транскрипции гена, ответственного за синтез этого фермента. Повышение же содержания триацилглицероллипазы в липоцитах способствует более быстрому и более выраженному ответу клеток на воздействие на них гормонов типа адреналина.

Механизм действия тироксина на жировую ткань не совсем ясен. Известно, что этот гормон способствует более эффективной передаче стимулирующего сигнала с гормон-рецепторного комплекса на аденилатциклазу, в результате чего при воздействии на липоциты гормонов типа адреналина происходит более быстрая активация липолиза в этих клетках.

Основным гормоном, тормозящим липолиз в жировой ткани, является инсулин. Инсулин снижает содержание цАМФ в липоцитах, по-видимому, за счет активации фосфодиэстеразы, переводящей цАМФ в обычную АМФ. Снижение концентрации цАМФ в клетках приводит как к инактивации протеинкиназы, так и к активации фосфопротеинфосфатазы, в результате чего происходит дефосфорилирование гормон-чувствительной липазы с ее инактивацией и последующим торможением липолиза. Простагландины также снижают содержание цАМФ в липоцитах с последующим торможением липолиза в клетках.

В период абсорбции в клетках различных органов и тканей активно идет липогенез. Во внутреннюю среду организма из кишечника поступают глюкоза и другие моносахариды, а также триацилглицерины в составе ХМ или ЛПОНП. Моносахариды, поступающие в липоциты или в гепатоциты, используются в ходе липогенеза, являясь как источниками ацетил-КоА для синтеза высших жирных кислот, так и источниками фосфотриоз, необходимых для образования 3-фосфоглицерола. Триглицериды ХМ или ЛПОНП после их гидролиза липопротеидлипазой также являются источниками высших жирных кислот и глицерола, поступающих в клетки и в дальнейшем используемыми в качестве субстратов для липогенеза.

Гормоном, стимулирующим липогенез, является инсулин. Инсулин ускоряет поступление глюкозы в клетки и стимулирует ее фосфорилирование, запуская тем самым процесс утилизации глюкозы в клетках. Причем стимулируется как процесс аэробного окисления глюкозы до СО2 и Н2О, так и работа пентозного цикла окисления глюкозы, обеспечивающего клетки восстановительными эквивалентами в виде НАДФН+Н+.

Инсулин активирует работу пируватдегидрогеназного комплекса, что приводит к увеличению образования ацетил-КоА - исходного субстрата для синтеза высших жирных кислот. Инсулин повышает активность фермента ацетил-КоА-карбоксилазы, катализирующего превращение ацетил-КоА в малонил-КоА, также необходимого для синтеза высших жирных кислот. Ускорение окислительного распада глюкозы в клетке приводит также к увеличению в ней концентрации фосфотриоз - 3-фосфоглицеринового альдегида и фосфодигидроксиацетона, используемых для образования 3-фосфоглицерола. Таким образом, воздействие инсулина на клетки приводит к наработке в них исходных соединений для синтеза триглицеридов. Кроме того, инсулин активирует в клетках глицеролфосфат-ацилтрансферазу - фермент, катализирующий перенос ацильного остатка с КоА на 3-фосфоглицерол первую реакцию метаболического пути синтеза триацилглицеринов.

Регуляция активности пируватдегидрогеназного комплекса, ацетил-КоА-карбоксилазы и глицеролфосфат-ацилтрансферазы осуществляется путем координированного процесса ковалентной модификации этих ферментов ( фосфорилирование - дефосфорилирование ).

В целом, воздействие инсулина на липоциты приводит, во-первых, к торможению липолиза в клетках, а, во-вторых, к активации в них процесса липогенеза, способствуя тем самым накоплению энергетических резервов в организме в виде триацилглицеринов.

4.3.Интеграция и регуляция обмена глюкозы

и высших жирных кислот на клеточном уровне

Известно, что в постабсорбционном состоянии основным энергетическим "топливом" для клеток являются высшие жирные кислоты, тогда как в период пищеварения, когда во внутреннюю среду организма поступают моносахариды и ресинтезированные в стенке кишечника триглицериды, основным энергетическим топливом становится глюкоза; более того, поступающая в клетки глюкоза превращается в жирные кислоты. Последний процесс особенно характерен для гепатоцитов и липоцитов.

При поступлении глюкозы в клетки она в цитозоле окисляется до пирувата (см. следующую далее схему), последний проходит через внутреннюю мембрану митохондрий и окисляется в матриксе до ацетил-КоА. Образовавшийся ацетил-КоА конденсируется с оксалоацетатом (ЩУК) с образованием цитрата, а цитрат выходит из митохондрии в цитозоль.

Поступивший в цитозоль цитрат, во-первых, служит источником ацетил-КоА и восстановительных эквивалентов для синтеза высших жирных кислот, а, во-вторых, активирует фермент ацетил-КоА-карбоксилазу, стимулируя тем самым образование малонил-КоА, также необходимого для синтеза высших жирных кислот. В результате при избытке глюкозы в клетке запускается синтез жирных кислот.

Малонил-КоА в свою очередь угнетает перенос высших жирных кислот из цитозоля в матрикс митохондрий, ингибируя активность внешней ацетил-КоА:карнитин-ацилтрансферазы, выключая таким образом окисление высших жирных кислот

В итоге при поступлении глюкозы в клетку угнетается окисление высших жирных кислот, стимулируется их синтез, а потребность клетки в энергии покрывается за счет аэробного окисления глюкозы, чему способствует повышение концентрации ацетил-КоА и цитрата в матриксе митохондрий. Увеличение концентрации жирных кислот в клетке наряду с нарастанием концентрации в них триозофосфатав создает условия для синтеза резервных триглециридов. В этот процесс включаются также высшие жирные кислоты и глицерол, поступающие в клетку в результате гидролиза триглицеридов ХМ и ЛПОНП.

В постабсорбционном периоде, когда концентрация глюкозы в клетках снижается, поток цитрата из митохондрий в цитозоль уменьшается, в результате в цитозоле уменьшается концентрация ацетил-КоА и инактивируется ацетил-КоА-карбоксилаза. Снижается содержание малонил-КоА, что приводит как к прекращению синтеза высших жирных кислот, так и к снятию ингибирования ацил-КоА:карнитин-ацилтрансферазы и восстановления транспорта жирных кислот в матрикс митохондрий, где они начинают окисляться. Таким образом, в условиях недостатка глюкозы в клетках выключается синтез высших жирных кислот и включается их b-окисление, которое и становится основным источником свободной энергии в клетках.

4.4.Патология липидного обмена

Нарушения липидного обмена выявляются у людей с самыми различными заболеваниями. Эти нарушения можно разделить на первичные и вторичные. При первичных или наследственных нарушениях липидного обмена патологические состояния возникают как следствие генетического дефекта, сопровождающегося нарушением синтеза белковых молекул, имеющих то или иное отношение к обмену липидов. Это может быть нарушение синтеза белков-рецепторов для ЛПНП, или нарушение синтеза апо-протеинов, или, наконец, нарушение синтеза ферментов, катализирующих отдельные реакции липидного обмена.

Вторичные нарушения липидного обмена развиваются или как следствие имеющегося заболевания, например, сахарный диабет, или как следствие воздействия факторов внешней среды, включая сюда и нарушение поведенческих реакций. Примерами могут служить нарушения обмена липидов при отравлении четыреххлористым углеродом или ожирение при систематическом переедании.


Информация о работе «Обмен липидов»
Раздел: Медицина, здоровье
Количество знаков с пробелами: 125886
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
83846
5
0

... , оранжевыми миндалинами и аккумуляцией эфиров ХС в других ретикулоэндотелиальных тканях. Патология связана с ускоренным катаболизмом апо А-I [8, 2000]. Переваривание и всасывание липидов.   Желчь. Значение.  На заре формирования современного учения о внешнесекреторной функции печени, когда естествоиспытатели располагали лишь первыми ...

Скачать
33533
1
0

... . Динамика химических превращений, происходящих в клетках, изучается биологической химией. Задачей физиологии является определение общих затрат веществ и энергии организмом и того, как они должны восполняться с помощью полноценного питания. Энергетический обмен служит показателем общего состояния и физиологической активности организма. Единица измерения энергии, обычно применяемая в биологии и ...

Скачать
20104
1
0

... кислоты, которые относят к незаменимым жирным кислотам (линолевая, линоленовая, арахидоновая), которые не синтезируются у человека и животных. С жирами в организм поступает комплекс биологически активных веществ: фосфолипиды, стерины. Триацилглицеролы – основная их функция – запасание липидов. Они находятся в цитозоле в виде мелкодисперсных эмульгированных маслянистых капелек. Сложные жиры : ...

Скачать
22113
1
1

... α,d – глюкоза  глюкозо – 6 – фосфат С образованием глюкозо – 6 – фосфата пути гликолиза и гликогенолиза совпадают. Глюкозо – 6 – фосфат занимает ключевое место в обмене углеводов. Он вступает в следующие метаболические пути: глюкозо – 6 – фосфат глюкоза + Н3РО4  фруктозо – 6 – фосфат пентозный путь распада (поступает в кровь и др. ...

0 комментариев


Наверх