Ф. В. Вайнштейн

Разбиением называется представление натурального числа в виде суммы натуральных слагаемых, а сами слагаемые — частями разбиения. Порядок слагаемых не играет роли; так разбиения 3=1+2 и 3=2+1 не различаются. Мы будем записывать разбиения, перечисляя их части через запятую в невозрастающем порядке. Например, разбиение 4=2+1+1 записывается как (2, 1, 1).

Пусть p(n) обозначает количество всех разбиений натурального числа n. Для небольших n легко вычислить p(n), просто выписав все разбиения. Например, p(5) = 7. Вот все 7 разбиений числа 5: (5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1). Однако получить таким способом, скажем, p(100) = 190 569 292 без помощи компьютера немыслимо. Между тем p(100) было известно ещё в XIX веке. Мы познакомим вас со многими интересными свойствами разбиений и научим находить p(n), не выписывая всех разбиений числа n.

Задача вычисления p(n) имеет почтенный возраст. Впервые она была сформулирована Лейбницем в 1654 году, а в 1740 — предложена немецким математиком Филиппом Ноде Леонарду Эйлеру. Занимаясь разбиениями, Эйлер открыл целый ряд их свойств, среди которых главное место занимала знаменитая «пентагональная теорема». С исследований Эйлера начинается история теории разбиений, в развитии которой принимали участие крупнейшие математики последующих поколений.

Две теоремы Эйлера

Изучение функции p(n) Эйлер начинает с рассмотрения бесконечного произведения

(1 + x + x2 + ...)(1 + x2 + x4 + ...) ... (1 + xk + x2k + ...) ...

Каждый член произведения получается в результате умножения мономов, взятых по одному из каждой скобки. Если в первой скобке взять xm1, во второй — x2m2 и т.д., то их произведение будет равно xm1+2m2+3m3+.... Значит, после раскрытия скобок получится сумма мономов вида xm1+2m2+3m3+....

Сколько раз в этой сумме встретится хn? Столько, сколькими способами можно представить n как сумму m1 + 2m2 + 3m3 + ... Каждому такому представлению отвечает разбиение числа n на m1 единиц, m2 двоек и т.д. Так получаются все разбиения, так как каждое из них, конечно, состоит из нескольких единиц, нескольких двоек и т.д. Поэтому коэффициент при xn равен числу разбиений p(n).

Посмотрим теперь на выражения в скобках. Каждое из них — бесконечная геометрическая прогрессия. По формуле суммирования

1 + x + x2 + x3 + ... =

1

1 – x

,
1 + x2 + x4 + x6 + ... =

1

1 – x2

и т.д. Теперь наш результат можно записать так:

p(0) + p(1) x + p(2) x2 + p(3) x3 + ... =

1

(1 – x)(1 – x2)(1 – x3) ...

.
(1)

Эта формула была открыта Эйлером в 1740 году. Ряд, стоящий в левой части, называется производящей функцией последовательности чисел p(0), p(1), p(2), ... Производящая функция позволяет компактно записать информацию о последовательности, хотя извлечение этой информации из производящей функции порой требует большого искусства. Сейчас вы увидите, как это делал Эйлер.

Обозначим через d(n) количество разбиений числа n на различные слагаемые, а через l(n) — на нечётные. Например, среди выписанных выше разбиений числа 5 различные части имеют (5), (4, 1) и (3, 2), а нечётные — (5), (3, 1, 1) и (1, 1, 1, 1, 1). Значит, d(5) = l(5) = 3.

Такие же рассуждения, как при выводе формулы (1), позволяют выписать производящие функции последовательностей d(n) и l(n):

d(0) + d(1) x + d(2) x2 + d(3) x3 + ... = (1 + x)(1 + x2)(1 + x3) ... ,
l(0) + l(1) x + l(2) x2 + l(3) x3 + ... =

1

(1 – x)(1 – x3)(1 – x5) ...

.

Упражнение 1. Докажите эти формулы.

Воспользуемся формулой

1 + xk =

1 – x2k

1 – xk

,

верной при всех k:

(1 + x)(1 + x2)(1 + x3) ... =

1 – x2

1 – x

·

1 – x4

1 – x2

·

1 – x6

1 – x3

· ...

В правой части равенства все числители сокращаются со знаменателями, содержащими x в чётной степени. Поэтому в знаменателе останутся только сомножители вида 1 – x2k–1. Итак,

(1 + x)(1 + x2)(1 + x3) ... =

1

(1 – x)(1 – x3)(1 – x5) ...

.
(2)

Значит, производящие функции последовательностей d(n) и l(n) совпадают! Мы доказали теорему Эйлера: d(n) = l(n). Это доказательство хорошо иллюстрирует силу метода производящих функций.

Но вернёмся к вычислению p(n). Изучая производящую функцию последовательности p(n), Эйлер сосредоточил внимание на произведении (1–x)(1–x2)(1–x3)..., т.е. на знаменателе правой части формулы (1). Раскрывая в нём скобки, Эйлер получил удивительный результат:

(1 – x)(1 – x2)(1 – x3) ... = 1 – x – x2 + x5 + x7 – x12 – x15 + x22 + x26 – x35 – x40 + ...

Показатели в правой части — пятиугольные числа, т.е. числа вида (3q2 ± q)/2, а знаки при соответствующих мономах равны (–1)q. Исходя из этого наблюдения, Эйлер предположил, что должна быть верна

Пентагональная теорема:

(1 – xk) = (–1)qx(3q²+q)/2.
k=1 q=–∞

Пентагональная теорема оказалась «крепким орешком» — Эйлер сумел доказать её лишь 14 лет спустя. Эта теорема позволяет сравнительно просто вычислять значения p(n). Вот как это делается.

Умножим обе части равенства (1) на

(1 – xk)
k=1

и воспользуемся пентагональной теоремой:

( p(0) + p(1) x + p(2) x2 + ...)(1 – x – x2 + x5 + x7 – x12 – x15 + ...) = 1.

Раскрыв скобки в левой части, получим, что коэффициенты при ненулевых степенях x равны нулю. Отсюда мы получаем замечательную формулу Эйлера, позволяющую последовательно находить числа p(n):

p(n) = p(n–1) + p(n–2) – p(n–5) – p(n–7) + ... + (–1)q+1 ( p ( n–

3q² – q

2

) + p ( n–

3q² + q

2

) ) .

(Мы считаем, что p(n) = 0 при n < 0.)

Упражнение 2. Найдите p(10).

Пользуясь формулой Эйлера, можно составить таблицу значений p(n) для n ≤ 200, что и проделал в начале XX века известный английский специалист по комбинаторике майор Мак-Магон. В то время это была наиболее полная таблица чисел p(n).

Итак, мы сформулировали две теоремы, одну из которых — d(n) = l(n) — доказали. Согласитесь, что при всей элегантности этого доказательства, оно всё же оставляет чувство неудовлетворённости. Два множества разбиений — на нечётные и на неравные части — неожиданно оказались состоящими из одинакового числа элементов, но причина этого равенства осталась скрытой от нас. Хотелось бы думать, что существует какой-то естественный способ каждому элементу одного множества ставить в соответствие элемент другого.

Соответствия Глэйшера и Сильвестра

Приведём ещё два доказательства теоремы Эйлера: d(n) = l(n).

Первое соответствие между разбиениями на различные слагаемые и разбиениями на нечётные слагаемые строится так:

Каждую часть разбиения нужно поделить на максимально возможную степень двойки. Частное будет нечётным числом и нужно включить это число в новое разбиение столько раз, каков делитель.

Например, разбиению (6, 2, 1) соответствует разбиение (3, 3, 1, 1, 1). Это остроумное соответствие придумано в конце XIX века английским математиком Дж. Глэйшером.

Чтобы доказать взаимную однозначность соответствия Глэйшера, достаточно построить обратное соответствие между разбиениями с нечётными частями и разбиениями с неравными частями. Вот это соответствие:

Пусть в разбиении некоторая нечётная часть r встречается k раз. Запишем k в виде суммы различных степеней двойки

k = 2a1 + 2a2 + ..., a1 > a2 > ...

и заменим (..., r, r, ..., r, ...) (k раз) на (..., 2a1r, 2a2r, ...). То, что получится, будет разбиением с различными частями.

Например, разбиение (5, 5, 5, 1, 1, 1, 1, 1, 1) соответствует разбиению (10, 5, 4, 2), поскольку число пятёрок равно 3 = 21 + 20, а число единиц равно 6 = 22 + 21.

Упражнения


Информация о работе «Разбиение чисел»
Раздел: Математика
Количество знаков с пробелами: 20190
Количество таблиц: 34
Количество изображений: 4

Похожие работы

Скачать
12882
3
2

... и k+1<m+n+2 m+n<k и m+n>k-1 Такого для натуральных чисел тоже не может быть. Получаем противоречие, следовательно, теорема доказана. В следующем параграфе рассмотрены упражнения о разбиениях натурального ряда, при решении которых используются результаты данного параграфа. §3. Упражнения Упражнение 1 Пусть последовательность задана формулой .Найти .        1 … 28 29 30 31 ...

Скачать
7153
0
0

... , края отрезков сливаются в точку, оставаясь при этом рациональными числами. Логический вывод гласит, что исходный отрезок оказывается заполненным одними лишь рациональными числами, иными словами ни для какой "иррациональности" места не остается. Другое доказательство наоборот приводит к тому, что некоторые точки на прямой не могут быть заданы ни целыми, ни дробными числами, т.е. не являются ...

Скачать
74627
6
11

... осознать ключевые преимущества мультимедиа и стремиться максимально использовать именно их. Глава 2. Практическое применение мультимедиа на уроках математики   2.1. Конспект урока по математике в 6 «а» классе школы №16 (приложение 2) Тема: Деление положительных и отрицательных чисел Цели: (слайд 1) 1.         научить делить положительные и отрицательные числа 2.         закрепить ...

Скачать
19400
0
3

... не равных одновременно нулю; здесь D = 3/4. Конечно, случай положительно определённых бинарных квадратичных форм крайне прост, и результат задачи был известен задолго до возникновения геометрии чисел. Однако на положительно определённых бинарных квадратичных формах относительно просто проводятся некоторые рассуждения геометрии чисел, так что эти формы удобно использовать в качестве иллюстрации ...

0 комментариев


Наверх