Докажите, что в результате второго преобразования получается разбиение с различными частями

20190
знаков
34
таблицы
4
изображения

3. Докажите, что в результате второго преобразования получается разбиение с различными частями.

4. Докажите, что если сначала выполнить преобразование Глэйшера, а затем обратное, то получится исходное разбиение.

Существует другое, не менее интересное и совершенно неожиданное доказательство теоремы Эйлера, принадлежащее американскому математику XIX века Дж. Сильвестру. Вот конструкция Сильвестра: пусть имеется разбиение числа n на нечётные части: (2k1+1, 2k2+1, ..., (2kq+1), где k1 ≥ k2 ≥ ... ≥ kq. На листе клетчатой бумаги в некотором её узле поставим точку x1. Справа от x1, поставим в узлах k1 точек и столько же точек поставим в узлах, расположенных под точкой x1. Затем проделаем то же самое с числом k2, взяв в качестве исходной точку x2, расположенную в следующем за точкой x1 по диагонали направо вниз узле, и т.д., пока не дойдём до числа kq.

Например, разбиению на нечётные части (9, 9, 5, 1, 1) числа 25 будет отвечать картинка, изображённая на рис. 1.

Разбиение чисел

Рис. 1.

Разбиение чисел

Рис. 2.

Она состоит из симметричных относительно диагонали уголков, так что в самом верхнем уголке 2k1+1 точек, в следующем 2k2+1 точек и т.д., а всего точек будет n. Теперь проведём на той же картинке линии так, как показано на рис. 2, подсчитаем количество точек на каждой из этих линий и образуем из полученных таким образом чисел разбиение. Оказывается, все части этого разбиения различны.

Упражнение 5. Докажите это утверждение.

В нашем примере получится разбиение (9, 6, 5, 4, 1). Подумайте, как построить по разбиению на различные части разбиение на нечётные, т.е. восстановить по такому разбиению исходную симметричную картинку.

Отступление: решение задачи М1065

В этом разделе используется более сложная техника, чем в остальной части статьи. При желании вы можете пробежать его, не вникая в детали, и продолжить чтение со следующего раздела. Итак, займёмся решением задачи М1065 из «Задачника «Кванта» (1987, № 9). Напомним её формулировку.

Будем рассматривать векторы (x, y) с целыми неотрицательными координатами, причём хотя бы одна из координат отлична от 0. Назовём такой вектор образующим, если |x–y| = 1.

а) Докажите, что рассматриваемый вектор (x, y) можно представить в виде суммы различных образующих (или он сам — образующий) тогда и только тогда, когда величина k(x, y) = x + y – (x–y)2 неотрицательна.

б) Докажите, что число N(x, y) различных (с точностью до порядка) представлений вектора (x, y) в виде суммы различных образующих зависит только от числа k = k(x, y). Найдите N(13, 18).

Решение задачи начнём с того, что найдём общий вид целочисленных решений неравенства k(x, y) ≥ 0. Числа x+y и x–y имеют одинаковую чётность, поэтому k(x, y) является чётным при любых целых x, y. Следовательно, для любого целого m≥0 достаточно найти целочисленные решения уравнения x + y – (x–y)2 = 2m. Положим x–y = q. Тогда x+y = 2m+q2. Из этих двух равенств немедленно получаем:

(x, y) = ( m +

q(q + 1)

2

, m +

q(q – 1)

2

) ,
(3)

где q — любое целое число, а m ≥ 0.

Смысл чисел m и q станет более наглядным, если представлять себе векторы вида (3) при m=0 как точки с целыми координатами параболы k(x, y) = 0, лежащей в плоскости (x, y). (Вы понимаете, почему это парабола?) Тогда полученные нами целочисленные решения неравенства k(x, y) ≥ 0. показывают, что все точки с целыми координатами, лежащие на параболе k(x, y) = 0 и внутри неё, получаются сдвигами целых точек этой параболы на векторы (m, m) (рис. 3). Удобно считать, что число m (m=0, 1, 2, ...) — номер параболы, на которой лежит точка (x, y), a q = x–y = 0, ±1, ±2, ... — номер точки на этой параболе.

Разбиение чисел

Рис. 3.

Поскольку условия задачи симметричны относительно перестановки координат векторов, достаточно доказать все утверждения для таких векторов (x, y), что x ≥ y, т.е. для векторов вида (3) с q ≥ 0.

Докажем достаточность условия в пункте а) задачи. По формуле суммы арифметической прогрессии

1 + 2 + ... + (q–1) + m + q = m +

q(q + 1)

2

;
0 + 1 + ... + (q–2) + m + (q–1) = m +

q(q – 1)

2

.

Поэтому формулы

(x, y) = (1, 0) + (2, 1) + ... + (q–1, q–2) + (m+q, m+q–1) при q>0

и

(m, m) = (1, 0) + (m–1, m) при q=0, m>0

дают представления (x, y) в виде суммы различных образующих.

Доказать необходимость условия тоже несложно. Пусть

(x, y) = (r1, r1–1) + ... + (ra, ra–1) + (s1, s1+1) + ... + (sb, sb+1)

— представление вектора (x, y) с x ≥ y в виде суммы различных образующих, где

r1 > r2 > ... > ra > 0,

s1 > s2 > ... > sb ≥ 0.

(4)

Для такого вектора

x = r1 + ... + ra + s1 + ... + sb,

y = r1 + ... + ra – a + s1 + ... + sb + b,

поэтому x–y = a–b. Положим q = x–y и

m = (r1–q) + (r2–(q–1)) + ... + (rq–1) + rq+1 + ... + ra + s1 + ... + sb =

= x –

q(q + 1)

2

=

x + y

2

+

x – y

2

q(q + 1)

2

=

x + y

2

2

(здесь мы снова воспользовались формулой суммы арифметической прогрессии). Из неравенств (4) следует, что rq ≥ ra ≥ 1, rq–1 ≥ 2, rq–2 ≥ 3, ... и вообще rk ≥ q–k+1. Поэтому m ≥ 0, т.е. (x, y) — вектор вида (3), что и требовалось доказать.

В геометрических терминах утверждение б) означает, что число N(x, y) зависит лишь от номера m параболы и не зависит от номера q точки на параболе.

Пусть T(m, q) — множество представлений вектора (3) в виде суммы различных образующих и t(m, q) — число таких представлений. Задача будет решена, если мы докажем, что для любого целого q имеет место равенство t(m, q) = t(m, q–1) (это и значит, что t(m, q), а вместе с ним N(x, y), не зависит от q). Мы отождествили выше множество T(m, q) с множеством таких пар последовательностей, удовлетворяющих неравенствам (4), что

r1 + ... + ra + s1 + ... + sb = m +

q(q + 1)

2

при q = a–b.

Такую пару мы будем записывать в виде (r1, ..., ra | s1, ..., sb).

Рассмотрим отображение φ множества T(m, q) в множество T(m, q–1), заданной формулой

φ(r1, ..., ra | s1, ..., sb) =
(r1–1, ..., ra–1 | s1+1, ..., sb+1, 0), если ra > 1,
(r1–1, ..., ra–1–1 | s1+1, ..., sb+1), если ra = 1.

Упражнение 6. Проверьте, что φ(r1, ..., ra | s1, ..., sb)  T(m, q–1).

Чтобы доказать, что φ — взаимно однозначное отображение, построим обратное отображение ψ: T(m, q–1) → T(m, q), прочитав правило, задающее φ, слева направо:

ψ(r1, ..., ra | s1, ..., sb) =
(r1+1, ..., ra+1, 1 | s1–1, ..., sb–1), если sb > 0,
(r1+1, ..., ra+1 | s1–1, ..., sb–1–1), если sb = 0.

Построенные отображения взаимно обратны, поэтому φ — взаимно однозначное соответствие. Значит, t(m, q) = t(m, q–1), что и утверждалось.

Чтобы научиться вычислять значения N(x, y), установим связь между числами t(m, q) и p(m).

Утверждение: t(m, q) = p(m).

Разбиение чисел

Рис. 4.

Мы уже знаем, что t(m, q) = t(m, 0), поэтому достаточно доказать, что t(m, 0) = p(m). Воспользуемся простым и полезным графическим средством, называемым диаграммой Юнга разбиения. Рассмотрим, например, разбиение (6, 4, 4, 2, 1). Его диаграмма Юнга изображена на рис. 4 (в первой строчке стоят 6 точек, во второй — 4, в третьей — 4, в четвёртой — 2, в пятой — 1). Всякое разбиение можно изобразить в виде диаграммы Юнга и по всякой диаграмме Юнга — записать разбиение.

Проведём на диаграмме Юнга диагональ — чёрная линия на рис. 4. Пусть r1 — число точек в первой строке, лежащих на диагонали и справа от неё, r2 — число точек второй строки, лежащих на диагонали и справа от неё, и т.д.; s1 — число точек первого столбца под диагональю, s2 — число точек второго столбца под диагональю и т.д. Поставим в соответствие диаграмме Юнга, изображающей разбиение числа m, пару последовательностей

(r1, r2, ... | s1, s2, ...),

r1 + r2 + ... + s1 + s2 + ... = m,

т.е. элемент множества T(m, 0). Например, диаграмме на рис. 4 соответствует пара (6, 3, 2 | 4, 2, 0). Зная пару последовательностей, можно легко восстановить диаграмму Юнга. Следовательно, мы установили взаимно однозначное соответствие между множеством разбиений и множеством T(m, 0). Утверждение доказано.

Теперь ничего не стоит ответить и на последний вопрос задачи — о значении N(13, 18). Поскольку 13 = 3+5·4/2, 18 = 3+6·5/2, точка (13, 18) лежит на третьей параболе. Значит, N(13, 18) = t(3, 0) = p(3) = 3.

Следующие упражнения — на применение диаграмм Юнга.

Упражнения

7. Число разбиений n не более чем с k частями, равно числу разбиений n с частями, не превосходящими k. Подсказка: отразите диаграмму Юнга относительно диагонали.

8. Число разбиений n с различными нечётными частями равно числу разбиений n, диаграмма Юнга которых симметрична относительно диагонали. Подсказка: вспомните соответствие Сильвестра.

Формула Гаусса–Якоби

Решая задачу М1065, мы проделали большую работу. Нельзя ли снова воспользоваться производящими функциями и извлечь из равенства t(m, q) = p(m) какое-нибудь красивое тождество?

N(x, y) — это число способов, которыми можно представить вектор (x, y) как сумму различных образующих вида (k, k–1) и (k–1, k). Рассуждая так же, как при выводе формулы производящей функции числа разбиений с различными частями, мы запишем производящую функцию для N(x, y) (это ряд от двух переменных u и v):

(1 + uk–1 vk)(1 + uk vk–1) = N(x, y)ux vy.
k=1 x,y=0

Поскольку N(x, y) = t(m, q), где x = m + q(q+1)/2, y = m + q(q–1)/2, равенство можно продолжить:

= t(m, q)um vm uq(q+1)/2 vq(q–1)/2.
q=–∞ m=0

Воспользуемся теперь тем, что t(m, q) = p(m) и продолжим равенство:

= p(m)um vm uq(q+1)/2 vq(q–1)/2.
q=–∞ m=0

Ряд, стоящий в скобках, — производящая функция чисел разбиения p(m), которую мы знаем (формула (1)), поэтому продолжаем:

= (1 – uk vk)–1 uq(q+1)/2 vq(q–1)/2.
k=1 q=–∞

Теперь приравняем левую часть первого и правую часть последнего равенства, умножив обе части на ∏ (1–uk vk). Получим окончательный результат:

(1 + uk–1 vk)(1 + uk vk–1)(1 – uk vk) = uq(q+1)/2 vq(q–1)/2.
k=1 q=–∞

Это тождество — цель наших преобразований. Оно называется формулой Гаусса–Якоби. Из этого замечательного тождества с двумя переменными можно получить много разных тождеств с одной переменной.

Упражнение 9. Подставьте в формулу Гаусса–Якоби u = –t, v = –t2 и получите пентагональную теорему Эйлера.

Теперь подставим в формулу Гаусса–Якоби u = v = – t. В левой части получится:

(1 – t2k–1)2 (1 – t2k) = (1 – t2k–1) (1 – tk).
k=1 k=1 k=1

Заменяя произведение ∏ (1 – t2k–1) на ∏ (1 + tk)–1 по формуле (2), мы преобразуем левую часть в

(1 – t)(1 – t2)(1 – t3) ...

(1 + t)(1 + t2)(1 + t3) ...

.

Правая часть формулы Гаусса–Якоби при подстановке u = v = – t превращается в

(–1)q² tq²,
q=–∞

и мы получаем следующую формулу:

(1 – t)(1 – t2)(1 – t3) ...

(1 + t)(1 + t2)(1 + t3) ...

= 1 – 2t + 2t4 – 2t9 + 2t16 – ...

Подстановка u = t, v = 1 в формулу Гаусса–Якоби аналогичным образом приводит к формуле:

(1 – t2)(1 – t4)(1 – t6) ...

(1 – t)(1 – t3)(1 – t5) ...

= 1 + t + t3 + t6 + t10 + ...

Эти две формулы получены Гауссом. Нечего и говорить, что это удивительно красивые формулы!

Тождества Роджерса–Рамануджана

В заключение я хочу познакомить вас с двумя знаменитыми тождествами теории разбиений, для которых до сих пор не найдено прозрачных доказательств, хотя эта задача и по сей день остаётся в сфере интересов многих математиков.

Первое тождество. Число разбиений натурального числа п, в которых разность между любыми двумя частями превосходит единицу, равно числу разбиений числа п на части, дающие при делении на 5 остаток 1 или 4.

Второе тождество. Число разбиений натурального числа п, в которых разность между любыми двумя частями и каждая часть превосходят единицу, равно числу разбиений числа п на части, дающие при делении на 5 остаток 2 или 3.

Конечно, закономерность, утверждаемая этими тождествами, в высшей степени красива и нетривиальна, и неудивительно, что крупнейший английский математик начала XX века Г. Харди, узнавший о них из письма Рамануджана, датированного 16 января 1913 года, пришёл в восхищение. *)

При чтении этой статьи у вас, может быть, сложилось впечатление, будто теория разбиений напоминает кунсткамеру, в которую заботливо собраны различные экзотические экспонаты, никак или почти никак между собой не связанные. До недавнего времени так оно и было. Ситуация коренным образом изменилась лишь в 70-х годах XX века, когда английскому математику Яну Макдональду удалось найти единый подход к доказательству большого класса тождеств теории разбиений и открыть много новых, объединив их в стройную теорию (тождество Гаусса–Якоби включается в неё). **) Для тождеств Роджерса–Рамануджана и многих аналогичных тождеств общего подхода не найдено, хотя в последнее время и появились алгебраические методы их доказательств. Так что, понимание истинной природы этих тождеств, вероятно, ещё впер


Информация о работе «Разбиение чисел»
Раздел: Математика
Количество знаков с пробелами: 20190
Количество таблиц: 34
Количество изображений: 4

Похожие работы

Скачать
12882
3
2

... и k+1<m+n+2 m+n<k и m+n>k-1 Такого для натуральных чисел тоже не может быть. Получаем противоречие, следовательно, теорема доказана. В следующем параграфе рассмотрены упражнения о разбиениях натурального ряда, при решении которых используются результаты данного параграфа. §3. Упражнения Упражнение 1 Пусть последовательность задана формулой .Найти .        1 … 28 29 30 31 ...

Скачать
7153
0
0

... , края отрезков сливаются в точку, оставаясь при этом рациональными числами. Логический вывод гласит, что исходный отрезок оказывается заполненным одними лишь рациональными числами, иными словами ни для какой "иррациональности" места не остается. Другое доказательство наоборот приводит к тому, что некоторые точки на прямой не могут быть заданы ни целыми, ни дробными числами, т.е. не являются ...

Скачать
74627
6
11

... осознать ключевые преимущества мультимедиа и стремиться максимально использовать именно их. Глава 2. Практическое применение мультимедиа на уроках математики   2.1. Конспект урока по математике в 6 «а» классе школы №16 (приложение 2) Тема: Деление положительных и отрицательных чисел Цели: (слайд 1) 1.         научить делить положительные и отрицательные числа 2.         закрепить ...

Скачать
19400
0
3

... не равных одновременно нулю; здесь D = 3/4. Конечно, случай положительно определённых бинарных квадратичных форм крайне прост, и результат задачи был известен задолго до возникновения геометрии чисел. Однако на положительно определённых бинарных квадратичных формах относительно просто проводятся некоторые рассуждения геометрии чисел, так что эти формы удобно использовать в качестве иллюстрации ...

0 комментариев


Наверх