Отрезок изоляции корня можно уменьшить путём деления его пополам.
Такой метод можно применять, если функция
непрерывна на отрезке
и на его концах принимает значения разных знаков, т.е. выполняется условие
(1).
Разделим отрезок
пополам точкой
, которая будет приближённым значением корня
.
Для уменьшения погрешности приближения корня уточняют отрезок изоляции корня. В этом случае продолжают делить отрезки, содержащие корень, пополам.
Из отрезков
и
выбирают тот, для которого выполняется неравенство (1).
В нашем случае это отрезок
, где
.
Далее повторяем операцию деления отрезка пополам, т.е. находим
и так далее до тех пор, пока не будет достигнута заданная точность
. Т.е. до тех пор, пока не перестанут изменяться сохраняемые в ответе десятичные знаки или до выполнения неравенства
.
Достоинство метода: простота (достаточно выполнения неравенства (1)).
Недостаток метода: медленная сходимость результата к заданной точности.
Пример. Решить уравнение
методом половинного деления с точностью до 0,001.
Решение.
Известен отрезок изоляции корня
и заданная точность
. По уравнению составим функцию
.
Найдём значения функции на концах отрезка:
,
.
Проверим выполнение неравенства (1): - условие выполняется, значит можно применить метод половинного деления.
Найдём середину отрезка и вычислим значение функции в полученной точке:
,
.
Среди значений
и
выберем два значения разных знаков, но близких друг к другу. Это
и
. Следовательно, из отрезков
и
выбираем тот, на концах которого значения функции разных знаков. В нашем случае это отрезок
и опять находим середину отрезка и вычисляем значение функции в этой точке:
,
,
,
- заданная точность результата не достигнута, продолжим вычисления.
,
,
,
.
,
,
,
.
,
,
,
.
,
,
,
.
,
,
,
.
,
,
,
.
,
,
,
.
,
,
,
.
,
- заданная точность результата достигнута, значит, нашли приближённое значение корня
.
Ответ: корень уравнения с точностью до 0,001.
... - в методе Ньютона наблюдается ускорение сходимости процесса приближений. 5. Метод касательных (метод Ньютона) Метод касательных, связанный с именем И. Ньютона, является одним из наиболее эффективных численных методов решения уравнений. Идея метода очень проста. Возьмём производную точку x0 и запишем в ней уравнение касательной к графику функции f(x): y=f(x0)+ f ¢(x) (x-x0) (1.5) Графики ...
... «проявляется» лишь в процессе преобразований. Очевидность и «завуалированность» новой переменной мы рассмотрим на конкретных примерах во второй главе данной работы. 2. Возможности применения метода замены неизвестного при решении алгебраических уравнений В этой главе выявим возможности применения метода замены неизвестного при решении алгебраических уравнений в стандартных и нестандартных ...
... - функции f. Дальше, имеем: . Отсюда , где W'(x) - транспонированная матрица Якоби. Поэтому окончательно , причем . 3. Программная реализация итерационных методов Реализация алгоритмов итерационных методов решения систем нелинейных уравнений будет показана на примере системы: 3.1 Метод простых итераций Приведём систему к виду: Проверим условие ...
... 1,' Y=',Y: 8: 3); X: =X+H; until X>=Xk+H/2; readkey; end. Блок-схема к заданию: Результаты вычислений: Задание 1 (б) Решение программы вычисления функции с условием Решение уравнения в табличном редакторе Microsoft Excel Для реализации задачи необходимо использовать логическую функцию ЕСЛИ, которая возвращает одно значение, если заданное условие при вычислении дает ...
0 комментариев