Теория случайных функций

2884
знака
3
таблицы
1
изображение

Московский Государственный Институт Электроники и Математики

(Технический Университет)

КУРСОВАЯ РАБОТА

по курсу

“Теория случайных функций“


Студент: Ференец Д.А.

Преподаватель: Медведев А.И.

Вариант: 2.4.5.б

Москва, 1995

Дано:

Восстанавливаемая, резервированная система (5,1) с КПУ, вероятность срабатывания КПУравна 

Время невыхода из строя (т.е. безотказной работы) основного элемента распределено экспоненциально с параметром .

Время восстановления вышедшего из строя элемента распределено экспоненциально с параметром .

Тип резервироавния - ненагруженный.

Для описания состояния системы введем двумерный случайный поцесс (t) = ((t), (t)) с координатами, описывающими:

- функционирование элементов

(t)  {0, 1, 2} - число неисправных элементов;

- функционирование КПУ

(t)  {0,1} - 1, если исправен, 0 - если нет.

Так как времена безотказной работы и восстановления имеют экспоненциальное распределение, то в силу свойств экспоненциального распределения, получим, что (t) - однородный Марковский процесс.

Определим состояние отказа системы:

Система отказывает либо если переходит в состояние 2 процесса (t) (т.е. отказ какого-либо элемента при количестве резервных элементов, равным нулю), либо если находится в состоянии 0 процесса (t) (т.е. отказ какого-либо элемента и отказ КПУ).

Таким образом, можно построить граф состояний системы:

 


 

1

П

 

 

 



0 - состояние, при котором 0 неисправных элементов,
т.е. состояние (t) = (0, (t))

1 - состояние, при котором 1 неисправный элемент,
т.е. состояние (t) = (1, 1)

П - состояние, при котором либо 2 неисправных элемента, либо 1 неисправный элемент и неисправный КПУ,
т.е. композиция состояний (t) = (1, 1), (t) =(2, 0) - поглощающее состояние.

 

Найдем интенсивности переходов.

Так как выход из строя каждого из элементов - события независимые, то получим:

вероятность выхода из строя элемента: 1-exp(-5h) 5h + o(h)

вероятность восстановления элемента: 1-exp(-h) h + o(h)



Пусть

Получим систему дифференциальных уравнений Колмогорова:

 

 

Пусть ,

т.е. применим преобразование Лапласа к .

Т.к. , то, подставляя значения интенсивностей, получаем:

 

 





 

корни 

 

Представляя каждую из полученных функций в виде суммы двух правильных дробей, получаем:

Применяя обратное преобразование Лапласа, получаем выражения для функций :





Искомая вероятность невыхода системы из строя за время t:

где

,

Итак,


где

Определим теперь среднее время жизни такой системы, т.е. MT
(T - время жизни системы):




Информация о работе «Теория случайных функций»
Раздел: Математика
Количество знаков с пробелами: 2884
Количество таблиц: 3
Количество изображений: 1

Похожие работы

Скачать
66594
1
0

... случайная величина приобрела статус полноценного математического понятия, ей необходимо дать строго формализованное определение. Это было сделано в конце 20-х годов А.Н. Колмогоровым в небольшой статье, посвященной аксиоматике теории вероятностей, а затем в подробностях изложено в его знаменитой книге «Основные понятия теории вероятностей». Подход Колмогорова стал теперь общепринятым, поскольку он ...

Скачать
96339
12
7

... damn(t)/dt =[daij(t)/dt] 1.3 ПОНЯТИЕ ДИНАМЧЕСКОГО ОБЬЕКТА. Физический объект - физическое устройство, характеризуемое некоторым числом свойств, соответствующих целям его использования. В теории систем существенным является не физическое, а математическое описание свойств объекта и соотношений между ними. В теории систем объектом А является абстрактный объект, связанный с множеством ...

Скачать
100095
5
2

... проверить знания студента из первой части курса, которая излагается в первых четырёх модулях. Во вторых вопросах билета проверяются знания классической предельной проблемы теории вероятностей и математической статистики, которые излагаются в следующих пяти модулях. 1.  Вероятностная модель с не более чем счётным числом элементарных исходов. Пример: испытания с равновозможными исходами. 2.  ...

Скачать
30959
0
0

... ≠ j) X(t) = mx(t) + ∑ Viφi(t) (t ? T) Следует: K(t, t’) = ∑ Diφi(t)φi(t’) Эту формулу называют каноническим разложением корреляционной функции случайного процесса. В случае уравнения X(t) = mx(t) + ∑ Viφi(t) (t ? T) Имеют место формулы: X(t) = mx(t) + ∑ Viφ(t) ∫ x(τ)dt = ∫ mx(τ)dτ + ∑ Vi ...

0 комментариев


Наверх