1.6. При вычислении расстояния от точки до конуса воспользуемся следующим результатом из [5].

Пусть (Е, Е+) Î (Â) и х Î Е+. Элемент x+ Î Е+ является ближайшим к х элементом конуса Е+ тогда и только тогда, когда существует f Î Е*+, ||f|| = 1, такой, что f(x+) = 0, f(x-) = ||x-||. В этом случае d(x, Е+) = ||x-||.

1.7. Пусть E – банахово пространство над R со строго регулярным замкнутым конусом Е+. Элементы x, у Î Е+ называются н-дизъюнктными или ортогональными по Роберу (обозначается x Геометрические свойства регулярного круглого конуса в пространствеу), если ||x + λу|| = ||x – λу|| для любого λ ≥ 0.

2. Описание множеств |Х|, Х+, Х-

Рассмотрим пространство Геометрические свойства регулярного круглого конуса в пространстве, упорядоченное регулярным круглым конусом K(f,a), где a = 0,5 и функционал f имеет первую координату, равную единице, а остальные координаты нулевые:

K1 = {x = (x1, x2, ..., xn) : x1 ≥ |x2| + … + |xn|}.

Все результаты легко перенести на общий случай (1) с помощью изометричного преобразования. В дальнейшем, если не указано иное, будем обозначать через X = Геометрические свойства регулярного круглого конуса в пространстве.

Опишем множества |Х|, Х+, Х- для произвольного элемента x = (x1, ..., xn) Î Геометрические свойства регулярного круглого конуса в пространстве. Заметим, что частный случай разложения элемента х на ортогональные по Роберу положительную и отрицательную части рассмотрен в [6].

2.1. Пусть x1 = 0. Найдем элемент конуса, который мажорирует элементы ± х и равен им по норме, т. е. у = (у1, …, yn) : y1 ≥ Геометрические свойства регулярного круглого конуса в пространстве, y ≥ ± х, ||y|| = ||x||. Такой элемент описывает следующая система:

Геометрические свойства регулярного круглого конуса в пространстве

Сложив первые два неравенства, получим оценку у1 ≥ X. С другой стороны, из третьего равенства видно, что у1 ≤ X. Тогда у1 = X, Геометрические свойства регулярного круглого конуса в пространстве= 0, следовательно yk = 0 для любого Геометрические свойства регулярного круглого конуса в пространстве. Получаем следующее представление метрического модуля элемента х и его положительной и отрицательной части

Геометрические свойства регулярного круглого конуса в пространстве,

Геометрические свойства регулярного круглого конуса в пространстве,

Геометрические свойства регулярного круглого конуса в пространстве.

2.2. Пусть x1 > 0. В этом случае система, описывающая элемент у Î |Х|, имеет вид:

Геометрические свойства регулярного круглого конуса в пространстве

Аналогичные действия позволяют утверждать, что X≤у1≤X + х1, т.е. у1 представим в виде у1 = X + λх1, где 0 ≤ λ ≤ 1. Последовательно подставляя значение у1 в систему, имеем: Геометрические свойства регулярного круглого конуса в пространстве-|yk – xk|) ≥ ≥ х1(l – λ) = Геометрические свойства регулярного круглого конуса в пространстве, с другой стороны, |уk| = |xk + (yk – xk)| ≥ ≥ |xk| – |yk – xk|. В итоге получаем:

|xk| = |yk| + |yk − xk| (Геометрические свойства регулярного круглого конуса в пространстве).

Из этого равенства следует, что уk и хk – yk – одного знака, что приводит к следующим выводам:

если (xk − yk) > 0 и yk > 0, то 0 < yk < xk ;

если (xk − yk) < 0 и yk < 0, то xk < yk < 0;

если (хк – yk) = 0 и yk = 0, то хk = уk = 0.

Из чего следует, что каждая координата уk (Геометрические свойства регулярного круглого конуса в пространстве) представима в виде уk = λkхk, 0 ≤ λk ≤ 1.

Отметим равенство, используемое в дальнейшем:

Геометрические свойства регулярного круглого конуса в пространстве.

Итак, при x1 > 0 имеем:

Геометрические свойства регулярного круглого конуса в пространстве

где Геометрические свойства регулярного круглого конуса в пространстве, 0 ≤ λ, λk ≤ 1};

Геометрические свойства регулярного круглого конуса в пространстве

где Геометрические свойства регулярного круглого конуса в пространстве, 0 ≤ λ, λk ≤ 1};

Геометрические свойства регулярного круглого конуса в пространстве

где Геометрические свойства регулярного круглого конуса в пространстве, 0 ≤ λ, λk ≤ 1}.

2.3. Пусть x1 < 0. Система, описывающая элемент у Î |Х|, на этот раз имеет вид:

Геометрические свойства регулярного круглого конуса в пространстве

Выполнив аналогичные пункту 2.2 действия, получим X ≤ у1 ≤ X – х1. В этом случае y1 = Х + λ|x1|, где 0 ≤ λ ≤ 1. Подставляя последовательно значение у1 в систему, получаем

Геометрические свойства регулярного круглого конуса в пространствеГеометрические свойства регулярного круглого конуса в пространстве и Геометрические свойства регулярного круглого конуса в пространстве.

Откуда выводим:

|xk| = |yk| + |yk + xk| (Геометрические свойства регулярного круглого конуса в пространстве).

Отсюда следует, что – yk и (xk + yk) – одного знака. Вновь получаем, что уk = –λkxk , 0≤λk≤1. При этом Геометрические свойства регулярного круглого конуса в пространстве=Геометрические свойства регулярного круглого конуса в пространстве= Геометрические свойства регулярного круглого конуса в пространстве.

Итак, при х1 < 0 имеем:

Геометрические свойства регулярного круглого конуса в пространстве

где Геометрические свойства регулярного круглого конуса в пространстве, 0 ≤ λ, λk ≤ 1};

Геометрические свойства регулярного круглого конуса в пространстве

где Геометрические свойства регулярного круглого конуса в пространстве, 0 ≤ λ, λk ≤ 1};

Геометрические свойства регулярного круглого конуса в пространстве

где Геометрические свойства регулярного круглого конуса в пространстве, 0 ≤ λ, λk ≤ 1}.

2.4. Общий случай. Для произвольного элемента х = (x1, ..., xn) и круглого регулярного конуса Kj (1) имеем:

Геометрические свойства регулярного круглого конуса в пространстве

где Геометрические свойства регулярного круглого конуса в пространстве, 0 ≤ λ, λk ≤ 1};

Геометрические свойства регулярного круглого конуса в пространстве

где Геометрические свойства регулярного круглого конуса в пространстве, 0 ≤ λ, λk ≤ 1};

Геометрические свойства регулярного круглого конуса в пространстве

где Геометрические свойства регулярного круглого конуса в пространстве, 0 ≤ λ, λk ≤ 1};

2 Труды молодых ученых, 2005 (1)
где Геометрические свойства регулярного круглого конуса в пространстве.

3. Нахождение расстояния от элемента до конуса

Пусть элемент x принадлежит конусу К1, т.е. х1 ≥ X. В этом случае d(x, K1) = 0, а ближайшим элементом конуса является он сам.

Пусть элемент х принадлежит конусу – К1, т.е. -х1 ≥ X. В этом случае очевидно d(x, K1) = ||х||, а ближайшим элементом конуса является ноль.

Пусть х1 = 0 и элемент х не принадлежит конусу ±К1. Покажем, что d(x, K1) = ||х–||, а ближайшим элементом конуса является х+. Согласно следствию 2.2.13 [5], для этого необходимо найти функционал f Î К*1 такой, что ||f|| = 1, f(x+) = 0, f(x-) = ||x-||,

где x+ – x- = x, ||x+ + x-|| = ||x||.

В качестве такого функционала выберем f=(1, –sgn x2, ...,–sgn xn). Для любого элемента конуса аÎК1 справедливо f(а)=a1 –Геометрические свойства регулярного круглого конуса в пространстве, т. е. f положительный функционал. Очевидно, что его норма равна единице. Элементы x+ и x–, вычисляемые по формулам 2.1, удовлетворяют условиям следствия 2.2.14 [5]. Кроме того,

Геометрические свойства регулярного круглого конуса в пространстве,

Геометрические свойства регулярного круглого конуса в пространстве.

Учитывая, что ||x–|| = Геометрические свойства регулярного круглого конуса в пространстве|| (Х, x2, ... , хn)|| = X, имеем, что f(x-) = =||x-||. Таким образом, условия следствия 2.2.14 [5] выполняются полностью, и мы приходим к выводу, что

d(x, K1) = || x-|| = Геометрические свойства регулярного круглого конуса в пространстве=X, а x+ является ближайшим к х элементом конуса.

3.4. Пусть X > х1 > 0. Положив λ = 0 в формулах 2.2, получим:

Геометрические свойства регулярного круглого конуса в пространстве

Геометрические свойства регулярного круглого конуса в пространстве) .

В этом случае очевидно, что x+ – x- = x, || x+ + x-|| = ||x||.

Рассматривая функционал из 3.3, находим:

Геометрические свойства регулярного круглого конуса в пространстве,

Геометрические свойства регулярного круглого конуса в пространстве.

Заметим, что в этих рассуждениях использован результат, полученный в 2.2, о том, что Геометрические свойства регулярного круглого конуса в пространстве.

В итоге получаем, что d(x, K1) = ||x-|| = Геометрические свойства регулярного круглого конуса в пространстве, a x+ является ближайшим к x элементом конуса.


Информация о работе «Геометрические свойства регулярного круглого конуса в пространстве»
Раздел: Математика
Количество знаков с пробелами: 14313
Количество таблиц: 0
Количество изображений: 2

Похожие работы

Скачать
78329
0
0

... пространственно-временным миром. Найденное Эйнштейном объединение принципа относительности Галилея с относительностью одновременности получило название принципа относительности Эйнштейна. Понятие относительности стало одним из основных понятий в современном естествознании.   1.4 Общая теория относительности о пространстве и времени   Был этот мир глубокой тьмой окутан. Да будет свет! И вот ...

Скачать
460103
24
39

... ребрами) изображают конструктивные и потоковые функциональные структуры [14]. Принципы построения функциональных структур технических объектов рассматриваются в последующих главах курса "Основы проектирования им конструирования" не включенных в настоящее пособие. Для систем управления существуют характеристики, которые можно использовать в качестве критериев для оценки структур. Одна из них - ...

Скачать
90168
0
3

... , а затем и более фундаментального, одновременно и самого абстрактного (динамического) понимания симметрии. 2. 2.2.Симметрия кристаллов. Правильную, симметричную форму кристаллов издавна объясняли симметричным расположением атомов. Само существование атомов было еще гипотезой, но внешнее проявление стройного порядка заставляло предполагать внутреннюю причину. Быть может, правильные пирамиды, ...

Скачать
51525
1
6

... шланги. Их укладывают под растения так, чтобы вода попадала непосредственно на всю площадь корневой системы. "Зеленые комнаты" и лабиринты Еще один важный принцип планирования регулярных садов- разделение ландшафта на различные по оформлению "зеленые комнаты". Причем высокие живые изгороди позволяют создавать не только обособленные "комнаты", но и целые лабиринты. Кстати, в наше время, когда ...

0 комментариев


Наверх