6.4 Техніка безпеки при транспортних роботах в сушильних цехах
До вантажно-транспортних робіт в сушильних цехах допускаються особи, яким відомі правила експлуатації підйомно-транспортних механізмів та які пройшли інструктаж по техніці безпеки.
Основні правила техніки безпеки при формуванні штабелів та їхньому транспортуванні в цеху зводяться до наступного.
При формуванні штабелів:
Забороняється складувати та розбирати штабелі всередині сушильної камери;
Допускається ручна укладка штабелів на висоту до 1.5 м від рівня підлоги; верхню частину в цьому випадку необхідно формувати, використовуючи естакади, штабелери та інші механізми;
Необхідно обов’язково перевіряти правильність укладки штабеля по висоті і ширині габаритним шаблоном;
При роботі на вертикальному підйомнику не можна знаходитися в безпосередній близькості від штабеля при підйомі чи опусканні (при розбиранні) платформи; не допускати попадання предметів (дощок, прокладок) в зазор між поверхнями штабеля та стінками котловану; приймати міри по видаленню предметів що потрапили в котлован підйомника [3,91].
Робота не несправних механізмах та при відсутності або несправності захисних огорож та пристосувань категорично забороняється. Не можна торкатися рухомих тросів, стояти близько штабеля при його русі, знаходитися під пакетом пиломатеріалів або іншого вантажу при підйомі та переміщенні.
Для зупинки рухомого штабеля необхідно застосовувати спеціальні башмаки, що встановлюються на рейки. В кінці рейкового шляху повинні бути встановлені упори, які перешкоджають сходження штабеля з рейок.
Необхідно слідкувати за тим, щоб постійні проходи утримувались в чистоті, а їх ширина була не менше одного метру [3,29].
6.5 Техніка безпеки при обслуговуванні сушильних камер і протипожежні заходи
До роботи по обслуговуванню сушильних камер допускаються особи, які знають їхній пристрій і правила технічної експлуатації. Основну небезпеку представляють заходи обслуговуючого персоналу в камери. Їхня кількість повинна бути максимально скорочена, для чого необхідно застосовувати стаціонарні чи дистанційні психрометри, пристосування для закладки і виїмки контрольних зразків з коридору керування.
При заході в камеру оператор сушильної установки повинний надягати брезентовий костюм із щільними застібками біля коміра і долоней рук, рукавички, шолом і протигазову маску з повітроохолоджувачем. Підлоги приміщення камер, особливо які мають підвал, повинні знаходитися в справному стані. Камери повинні бути обладнані електричним освітленням напругою 12—18 В. Якщо воно відсутнє, варто користатися акумуляторними ліхтарями чи переносними низьковольтними лампами із сіткою і броньованим шнуром.
Двері в камеру повинні мати зовнішні і внутрішні ручки. При вході в камеру необхідно стежити за тим, щоб двері випадково не закрили зовні. Якщо оператору треба зайти в гарячу камеру, біля її дверей повинен знаходитися черговий.
Коридори керування камер, лабораторія, топкові приміщення газових камер повинні бути обладнані вентиляцією для того, щоб підтримувати температуру не вище 25° С. Паропроводи необхідно теплоізолювати, фланці з’єднань паропроводів і калориферів закрити захисними екранами. Усі рухомі частини устаткування, сушильних камер повинні бути закриті огородженнями.
У сушильному цеху необхідно періодично проводити навчання персоналу правилам охорони праці і техніки безпеки, а також інструктаж з виробничої санітарії. У цеху повинний бути обладнані санітарний пост і стенди з наочними посібниками по техніці безпеки.
При експлуатації газових камер необхідно стежити за герметичністю газоходів, топок і дверей камер. Заходити в працюючі газові камери дозволяється тільки в протигазі і захисному костюмі [3,245].
Зольне приміщення топки повинне бути обладнане вентиляцією і мати двері, що ведуть назовні. Перед топковим отвором повинні бути встановлені екрани, що охороняють робітників від впливу теплового випромінювання. Шибери і заслінки, що перекривають газоходи, повинні мати систему керування ними з підлоги приміщення. Положення шиберів і заслінок повинне надійно фіксуватися запірними пристроями. Категорично забороняється ходити по зводу топки під час її роботи.
Необхідно виконувати наступні протипожежні вимоги:
- регулярно прибирати приміщення камер, цеху й інших допоміжних приміщень, не допускаючи скупчення відходів і сміття;
- у приміщенні сушильного цеху не застосовувати відкритий вогонь (свічі, гасові і паяльні лампи) і не курити; зварювальні роботи проводити з дозволу представників пожежної охорони;
- вчасно подавати змазку в підшипники вентиляторів і електродвигунів, не допускаючи їхнього перегріву.
У газових сушильних камерах, крім того, необхідно:
- стежити за станом топкових газів, не допускати вильоту іскор за межі іскрогасильної камери топки, користатися тільки дозволеним для неї паливом;
- систематично чистити клапани і газоходи;
- не допускати прогарів топки і подачі великих мас палива, небезпечних у відношенні вибуху;
золу з зольного приміщення вивозити не раніше, ніж через 5 діб після її видалення з топки.
Пожежі становлять особливу небезпеку, тому що пов’язані з великими матеріальними втратами. Як відомо пожежа може виникнути при взаємодії горючих речовин, окислювання і джерел запалювання. Горючими компонентами є: будівельні матеріали для акустичної і естетичної обробки приміщень, перегородки, двері, підлоги, ізоляція кабелів і ін [3,26].
Протипожежний захист - це комплекс організаційних і технічних заходів, спрямованих на забезпечення безпеки людей, на запобігання пожежі, обмеження її поширення, а також на створення умов для успішного гасіння пожежі.
Джерелами загоряння можуть бути електронні схеми від ЕОМ, прилади, застосовувані для технічного обслуговування, пристрої електроживлення, кондиціонування повітря, де в результаті різних порушень утворюються перегріті елементи, електричні іскри і дуги, здатні викликати загоряння горючих матеріалів.
У сучасних ЕОМ дуже висока щільність розміщення елементів електронних схем. У безпосередній близькості друг від друга розташовуються сполучні проводи, кабелі. При протіканні по них електричного струму виділяється значна кількість теплоти. При цьому можливо оплавлення ізоляції. Для відводу надлишкової теплоти від ЕОМ служать системи вентиляції і кондиціонування повітря. При постійній дії ці системи являють собою додаткову пожежну небезпеку.
Для більшості приміщень, де розміщені ЕОМ, установлена категорія пожежної небезпеки В.
До засобів гасіння пожежі, призначених для локалізації невеликих загорянь, відносяться внутрішні пожежні водопроводи, вогнегасники, сухий пісок, азбестові ковдри і т.п.
Для гасіння пожеж на початкових стадіях широко застосовуються вогнегасники. По виду використовуваної вогнегасильної речовини вогнегасники підрозділяються на наступні основні групи.
Пінні вогнегасники, застосовуються для гасіння палаючих рідин, різних матеріалів, конструктивних елементів і устаткування, крім електроустаткування, що знаходиться під напругою [3,93].
Газові вогнегасники застосовуються для гасіння рідких і твердих речовин, а також електроустановок, що знаходяться під напругою.
У приміщеннях, де присутні ЕОМ застосовуються головним чином вуглекислотні вогнегасники, достоїнством яких є висока ефективність гасіння пожежі, схоронність електронного устаткування, діелектричні властивості вуглекислого газу, що дозволяє використовувати ці вогнегасники навіть у тому випадку, коли не вдається знеструмити електроустановку відразу.
Для виявлення початкової стадії загоряння й оповіщення служби пожежної охорони використовують системи автоматичної пожежної сигналізації (АПС). Крім того, вони можуть самостійно пускати в хід установки пожежегасіння, коли пожежа ще не досягла великих розмірів. Системи АПС складаються з пожежних оповісників, ліній зв'язку і прийомних пультів (станцій).
Відповідно до “Типових правил пожежної безпеки для промислових підприємств” зали ЕОМ, приміщення для зовнішніх запам'ятовуючих пристроїв, підготовки даних, сервісної апаратури, архівів, копіювально-множного устаткування і т.п. необхідно обладнати димовими пожежними оповісниками. У цих приміщеннях на початку пожежі при горінні різних пластмасових, ізоляційних матеріалів і паперових виробів виділяється значна кількість диму і мало теплоти.
6.6 Інженерні рішення з охорони праці
- розрахунок освітлення
Розрахуємо кількість світильників на довжину та ширину приміщення:
де a, b - довжина і ширина приміщення, L - відстань між світильниками.
Якщо прийняти довжину приміщення 4 м, а ширину 2 м і відстань між світильниками 2 м отримаємо:
Кількість світильників у приміщенні: N=NшNд=2 (шт). Визначимо індекс приміщення:
де Нр - висота підвісу світильників Нр=2,5 м;
Визначимо світловий потік, однієї лампи. Для цього використаємо формулу
де ен - нормативна освітленість, Ен=100 лк; ' k - коефіцієнт запасу k=1,5;
z - коефіцієнт нерівномірності освітлення, приймається рівним 0,9 для ламп розжарення.
n - коефіцієнт використання світлового потоку світильника, вибирається по таблицям [3,6] в залежності від і.
По значенню Ф вибираємо тип лампи: лампа газонаповнена напругою 220 В типу НГ-49, потужністю 100 Вт.
– розрахунок захисного заземлення
Захисне заземлення – це навмисне з’єднання з землею частин обладнання, які не знаходяться під напругою в нормальних умовах експлуатації, але які можуть знаходитись під напругою в результаті порушення ізоляції електроустановки.
Рис.6.1 Пристрій заземлення
а) – схема заземлюючого пристрою; b) – розміщення одиночного заземлювача;
1-плавкі вставки; 2 – електродвигун; 3- з’єднувальна штаба; 4- трубчатий заземлювач
В даному розділі дипломного проекту необхідно розрахувати заземлюючий пристрій для заземлення електродвигуна при слідуючих вихідних даних:
грунт – суглинок з питомим електричним опором r = 100 Ом*м;
в якості заземлювачів прийнято сталеві труби діаметром d = 0.08 м і довжиною l = 2.5 м, розміщені вертикально і з’єднані зварюванням сталевою штабою 40*4 мм;
потужність електродвигуна U=1,5 кВт, n = 3000 хв-1;
потужність трансформатора 170 кВ*А, допустимий по нормах опір заземлюючого пристрою [r3] <= 4 Ом.
Розрахунок:
Визначаємо опір одиночного вертикального заземлювача Rв, по формулі:
,
де t – відстань від середини заземлювача до поверхні ґрунту, м;
l, d – довжина і діаметр стержневого заземлювача, м.
Розрахунковий питомий опір ґрунту
,
де y– коефіцієнт сезонності, який враховує можливість підвищення опору ґрунту на протязі року.
Приймаємо y = 1.7, для першої кліматичної зони, тоді
100*1.7=170 Ом
48 Ом
Визначаємо опір сталевої штаби, яка з’єднує стержневі заземлювачі
,
де l – довжина полоси, м;
d=0.5b( b – ширина полоси, рівна 0.08 м).
Визначаємо розрахунковий питомий опір ґрунту rрозр при використанні з’єднувальної штаби у вигляді горизонтального електрода довжиною 50 м. При довжині полоси 50 м, y¢ =5.9, тоді
r¢розр=ry = 100* 5.9 = 590 Ом*м
Визначаємо орієнтовне число n одиночних стержневих заземлювачів по формулі
,
де - допустимий по нормах опір заземлюючого пристрою,
коефіцієнт використання вертикальних заземлювачів (приймемо його рівним 1).
Приймаємо розміщення вертикальних заземлювачів по контуру з відстанню між суміжними заземлювачами рівною 2l. По таблиці [3,102] знайдемо дійсні значення коефіцієнтів використання та , виходячи з прийнятої схеми розміщення вертикальних заземлювачів, ,
Визначаємо необхідне число вертикальних заземлювачів
Визначаємо загальний розрахунковий опір заземлюючого пристрою R з врахуванням з’єднувальної штаби
Правильно розрахований заземлюючий пристрій повинен відповідати умові R<=[r3]. Розрахунок виконано вірно, так як 3.7 < 4.
- розрахунок блискавкозахисту цеху
Блискавкозахист - це комплекс захисних пристроїв, призначених для забезпечення безпеки людей, захисту будинків і споруд, устаткування і матеріалів від ударів блискавки.
Вибір захисту залежить від призначення будинку або споруди, інтенсивності грозової діяльності в даному районі й очікуваного числа уражень об'єкта блискавкою в рік.
Будинки захищаються від прямих ударів блискавки блискавковідводами. Блискавковідводи складаються з блискавкоприймачів та заземлювачів. Вони можуть бути окремо стоячими або встановлюватися безпосередньо на будинку або споруді. За типом блискавкоприймача їх підрозділяють на стрижневі, тросові та комбіновані. У залежності від числа діючих на одному спорудженні блискавковідводів, їх підрозділяють на одиночні, подвійні і багаторазові [3,117]. У даному розділі розрахований одиночний стрижневий блискавковідвід, що має зону захисту у виді конуса.
Рис.6.2. Схема блискавкозахисту.
1 – блискавкоприймач;
2 – дерев’яний брус;
3 – блискавковідводи;
4 – заземлюючий пристрій.
Найбільша висота h блискавковідводу не повинна перевищувати 150м. Співвідношення розмірів зони захисту типу “Б” наступне:
- h0 = 0.92h
- R0 = 1.5h
- Rx = 1.5[h - (hx/0.92)]
При відомій висоті об'єкта, що захищається – hx (вона дорівнює 4 метри) розраховується радіус зони захисту на цій висоті Rx за законом подібності трикутників:
підставляючи в даний вираз відповідні значення одержимо:
виходить, що Rx = 6,5 м. Тоді повна висота блискавкоприймача для зони “Б” буде дорівнювати:
h = (Rx + 1,63hx)/1,5 = (6,5 + 1,63*4)/1,5 = 8,7 (м)
Так, виходячи з розмірів приміщення та камери для сушіння, нам необхідно розмістити по одному блискавковідводу на даху будинку та на камері.
7. Розрахунок економічної ефективності
1. Розрахуємо обсяг продукції, яку дозволяє випустити трьохступенева сушильна камера
О=nЕ,
де n – кількість оборотів камери на протязі року;
Е – місткість камери, м3.
Місткість камери визначають по рівнянню
Е=Гb ,
де Г— обсяг штабелів, одночасно розміщених в камері; b — коефіцієнт об'ємного заповнення штабеля b=0,8.
В свою чергу
Г=25 (м3),
Тоді
Е=Гb=25∙0,8=20 (м3)
Обсяг продукції стане рівний О=nЕ=20∙20=400 (м3/рік). З розрахунку, що сушіння 1м3 коштує 120 грн фірма отримає виручку ВП=60000 грн/рік.
2. Розрахуємо затрати, які супроводжують процес сушіння деревини. Вони включають в себе затрати на електроенергію, сировину, зарплату працівникам та амортизацію.
а) Вирахуємо витрати електроенергії згідно виразу
,
де W – загальні витрати електроенергії;
Wа– річні витрати електроенергії на роботу обладнання та апаратури;
Wос–річні витрати електроенергії на освітлення.
В свою чергу
,кВт∙год/рік ,
де ∑Nвст – сума всіх потужностей встановлених двигунів;
τрозр– розрахункова тривалість роботи електродвигунів протягом року;
kз – коефіцієнт роботи електродвигуна;
kо – коефіцієнт, який враховує одночасність роботи електродвигунів;
kд і kвтр – коефіцієнти втрат електроенергії в мережі.
На практиці виконують перетворення
,
де kП – коефіцієнт попиту, який встановлений наперед для різних типів обладнання:
- для сушильної камери kП= 0,8;
- для двигунів та вентиляторів kП=0,7;
- для ламп освітлення kП=0,9.
Розрахункова тривалість роботи електродвигунів протягом року визначається згідно рівняння
, год ,
де В, С –вихідні та святкові дні, крім того включають в себе профілактичний ремонт, В+С=30 діб;
τзм – тривалість зміни, τзм = 8 год;
n – кількість змін протягом робочого дня, n=3.
Визначимо, крім того час завантажувально-розвантажувальних робіт
(діб),
де 8,82 – коефіцієнт тривалості завантажувально-розвантажувальних робіт.
Тоді тривалість завантажувально-розвантажувальних робіт приймається як 24 год. на кожен оборот камери
(год/рік)
Час, який необхідний для охолодження деревини після висушування приймається 1год на 1 см дошки
τох=1∙2,5∙38=270 (год/рік)
Тоді реальна тривалість роботи сушильної камери буде
(год/рік)
Визначимо ∑Nвст=2∙8 +12,7=28,7 (кВт)
Тоді
кВт∙год/рік
Для визначення річних витрат електроенергії на освітлення використовуємо вираз
, кВт∙год/рік,
де F – площа приміщення F=2∙2,2=4,4 (м2);
PП– питома потужність на освітлення, PП =27,272 Вт ;
kП – коефіцієнт попиту, kП= 0,9;
τроб– тривалість роботи світильників, визначається за формулою
=2024 (год/рік),
де nроб– кількість робочих днів в році nроб=253 дні;
τзм – тривалість зміни, τзм = 8 год;
Тоді
кВт∙год/рік
Загальні витрати електроенергії
кВт∙год/рік
Затрати на електроенергію будуть складати ЗЕ=W∙0,19=29784,29 (грн/рік)
б) Затрати на заробітну плату складають ЗЗП =Чпр∙250∙12,
де Чпр – чисельність працівників, включає в себе 2 вантажники 1 працівник обслуговуючого персоналу;
350 – оклад кожного працівника;
12 – кількість місяців в році.
Тоді ЗЗП =3∙350∙12=12600 (грн/рік).
в) Затрати на устаткування складають 24 900 грн (включає в себе вартість сушильної камери (17600 грн), насосу і вентиляторів (6 000) та стінки управління (1300)). Затрати на амортизацію рівні ЗА =0,15×24900=3735 грн.
Загальні затрати рівні
З= ЗЕ +ЗГ+ЗЗП+ЗА=32586,32+48+18000+3735=54369,32 (грн)
Після проведення автоматизації затрати на амортизацію складуть ЗА =4180 грн, а загальні затрати будуть дорівнювати З=29784,29+48+12600 +4180=42432,29грн
3. Прибуток, який отримає фірма рівний:
П=ВП -З=57600-54369,32=3230,68 грн
Після проведення автоматизації прибуток фірми складе
П=ВП -З=57600-42432,29=15167,71 грн
4.Розрахуємо рентабельність згідно рівняння
Р=П/З=57600/42432,29=1,35745. Так як Р>1, то можна зробити висновок, що фірма рентабельна.
5.Після проведення автоматизації продуктивність праці зросте і буде становити Пп.скл=30 м3/зміну і Пп.роз =55 м3/зміну за рахунок зниження затрат на сушильну камеру.
Всі отримані при розрахунку дані заносимо в зведену таблицю 7.1.
Таблиця. 7.1.
Зведені дані економічної ефективності.
N п/п | Назва показника | до впровадження автоматизації | після впровадження автоматизації | ±Δ приріст |
1 | Обсяг продукції, м3/рік | 400 | 400 | 0 |
2 | Затрати, грн/рік включаючи затрати на: електроенергію заробітну плату амортизацію | 54369,32 29784,29 12000 3735 | 42432,29 29784,29 12000 4180 | -11937,03 0 0 -445 |
3 | Прибуток, грн/рік | 3230,68 | 15167,71 | 11937,03 |
4 | Рентабельність | 1,0592 | 1,35745 | 0,2985 |
5 | Продуктивність праці, м3/зміну | 24 | 30 | 6 |
Висновок. Після проведення автоматизації фірма буде у виграші. Так як отримані значення затрат менші, ніж були до впровадження автоматизації. Прибуток зросте на 221 %, рентабельність підвищиться на 78 %.
Висновки
В даному дипломному проекті мною було розроблена автоматизована система управління процесом сушіння деревини на ВАТ „Будматеріали” з використанням мікроконтролерних засобів.
Також в даному дипломному проекті було розглянуто типи сушки деревини та вивчено технологічну схему процесу, проведено розрахунок та дослідження одноконтурної АСР температури.
Розроблено і спроектовано схеми: функціональна, схема зовнішніх з'єднань, принципова електрична схема , схема монтажу електрокомпонентів, друкована плата пристою.
Також проведено розрахунок економічних показників, приведені порівняльна таблиця і розраховано економічний ефект.
У розділі “охорона праці” зроблений розрахунок блискавкозахисту, штучного освітлення та заземлення і приведені заходи щодо техніки безпеки даного виробництва.
Запроектована мікроконтролерна система на базі сучасного мікроконтролера РІС16F877 здійснює збір всіх основних показників роботи сушарки та регулювання протіканням процесу за наперед заданою програмою. При регулюванні процесом застосовано принцип двопозиційного регулювання.
Для якісного збору технологічних параметрів використані сучасні давачі температури, вологості в камері та вологості пиломатеріалів. Що дає змогу точніше, і головне швидше реагувати на зміну стану об’єкта автоматизації. Також відбулися зміни у вимірюванні температури, після автоматизації значення температури знімаються цифровими давачами, значення яких обробляється мікроконтролером, що дає високу швидкість та точності обробки інформації.
Побудована на базі сучасних технічних засобів мікроконтролерна система, разом з комплексом давачів збору технологічних параметрів, дозволить проводити сушіння різних порід деревини по визначеним програмам, що вносяться оператором, та мають високу ступінь гнучкості. Також не виключена можливість адаптації програм в залежності він потреб що виникають при сушінні різних порід деревини.
Слід також зауважити, що при розробці системи автоматизації було застосовано давачі, які дозволяють здійснювати вимірювання значень параметрів в широких межах та з високою точністю, що забезпечує якісне керування процесом та вищу якість отримуваної продукції, що фактично неможливо здійснити за допомогою застарілих приладів та впливу на процес оператором вручну.
Список використаної літератури
1. Е.И. Юревич. Теория автоматического управления. Л. Энергия, 1969.
2. Богданов Е.С., Козлов В.А., Пейч Н.Н. Справочник по сушке древесины. – М.: Лесн. Пром-сть, 1981. 191ст.
3. Кириченко В.Н. Охрана труда. М. 1990.
4. Кречетов И. В. Сушка и защита древесины. – М.: Лесн. Пром-сть, 1987. 372ст.
5. Однокристальные 8-розрядные FLASH CMOS микроконтроллеры компании Microchip. Перевод ООО “Микро-Чип”.М, 2002.
6. В.И. Гостев. Системы управления с цифровыми регуляторами. Справочник. К. Техника. 1990.
7. Е.П. Стефани. Сборник задач по основам автоматического регулировани тепло-энергетических процесов. М. Энергия. 1973.
8. Технічна документація DS30292C компанії Microchip Technology Incorporated, USA. 2002.
9. Технічна документація DS21490B компанії Microchip Technology Incorporated, USA. 2002.
10. Технічна документація HT1621 компанії Holtek Semiconductor Incorporated, Taiwan. 2001.
... окремих деталей і вузлів на підприємствах, розташованих в районах видобування деревини, дозволяє більш ефективно використовувати відходи деревообробки для виробництва деревностружкових і деревноволокнистих плит. 2. Виробництво конструкцій із деревини В малоповерховому, сільському (склади мінеральних добрив тощо), цивільному (спортивні і концертні зали) будівництві знайшли застосування дерев ...
... і тирси розміром 1.5. 5 мм. 2. Виробництво виробів і конструкцій на неорганічних речовинах При виробництві блоків стін підвалів з бетонів класом по міцності при стиску В7,5 і В10 на підприємствах бетонних і залізобетонних конструкцій застосовують вторинні сировинні ресурси, які отримують внаслідок переробки некондиційних залізобетонних конструкцій і демонтованих з будинків і споруд з значним ...
... речовини, викиди поживних елементів, подібних до стоку добрив; осідання кислотних опадів, хвороботворні організми. Все це призводить до погіршення якості води і деградації водних ресурсів. Комплексна екологічна оцінка стану річок басейнів Дніпра за методикою, яка розроблена Українським НДІ водогосподарсько-екологічних проблем, показала, що немає жодного басейну, стан котрого можна було б класифі ...
0 комментариев