1. ДИНАМИЧЕСКИЙ АНАЛИЗ МЕХАНИЗМА

 

1.1 Структурный анализ механизма

Подвижно соединенные между собой части механизма называются звеньями. В механизме различают неподвижные и подвижные звенья, которые могут совершать разные типы движений.

Структурно-кинематической схемой механизма называется условное изображение взаимосвязанных неподвижных звеньев, выполненное в принятом стандартном масштабе длин с принятием условных обозначений кинематических пар.

Определение ступени свободы механизма:

Ступень движения механизма определим по уравнению Чебышева

W = 3n – 2P5 – P4

где n – количество движущихся звеньев механизма;

 ,  – количество кинематических пар 4-го и 5-го классов.

Для механизма, что исследуется, количество движущихся звеньев n=4, кинематических пар 5-го класса P5=7 , кинематических пар 4-го класса нет.

Имеем:

W = 3 * 5 – 2 * 7 - 0 = 1

Для работы механизму необходима только одно ведущее звено, так как ступень движимости равна единице.

1.2 Кинематический анализ механизма

 

1.2.1 Определение скоростей точек и звеньев механизма

Планом скоростей называется диаграмма, на которой изображены векторы скоростей точек плоского механизма.

Для определения скоростей точек и звеньев механизма воспользуемся методом планов скоростей. Скорость точки А (равно, как и скорость точки D) равна нулю, и поэтому построение планов скоростей начинаем со скорости точки B ведущего звена АB (так как можно определить его угловую скорость w и известна длинна данного звена АВ)

Найдем скорость ведущего звена w, беря во внимание, что нам известна частота вращения n; w - обороты в минуту, 1 оборот = 2П, w = , отсюда:

w = 56,52 (об/мин)

Учитывая, что скорость ведущего звена w теперь известна, скорость точки B определим из уравнения

VВ = w * LАВ

где LAB – длина звена АB, м.

VB = 56,52 * 0,025 = 1,41 (м/с)

Вектор VB направлен перпендикулярно звену АB.

От произвольно взятой точки Pv (полюса плана скоростей) отложим вектор скорости точки В, перпендикулярен звена АВ и направлен в сторону вращения.

Выбираем масштабный коэффициент скорости m (определим из уравнения):

mV=VB/PVв

где VB – скорость точки, м/с;

PVв– длина вектора, мм.

m= 1,41/97,5= 0,014 ()

Определяя скорость точки С будем исходить из того, что эта точка одновременно принадлежит двум звеньям ВС и CD.

Для определения скорости точки C будем использовать теорему о разложении скоростей.

По принадлежности точки C звену ВС записываем первое векторное уравнение:

VС = VВ +VСВ

В этой векторной сумме известно первое слагаемое (из построения графика скорости точки В), а VСВ – только направление (этот вектор перпендикулярен звену СВ). Проводим соответствующую линию на плане скоростей через точку В.

По принадлежности точки C звену СD записываем второе векторное уравнение:

VС = VD+VСD

Из этого уравнения сразу можно выделить, что VD = 0, так как точка D – неподвижна, а про VСD известно лишь то, что этот вектор перпендикулярен ВА. Таким образом мы можем провести вектор, перпендикулярный СD и проходящий через полюс PV, а скорость точки С определяется:

VC = вс * mV = 73 * 0,014

где вс – вектор, взятый из плана скоростей, мм

Для нахождения скорости точки Е необходимо составить пропорцию, из которой мы получим величину отрезка се.


ВС/СЕ = вс/се;

се = СЕ * вс / ВС

так как: ВС = 180 мм; СЕ = 52 мм; вс = 70 мм

се =20,2 мм

Данную полученную величину откладываем на плане скоростей от точки с по продолжению прямой вс. Рассчитываем VE

VE = PVе * mV = 62,5 * 0,014 = 0,966

Определим скорость точки F. Точка F принадлежит звену EF и ползуну 5 (траектория движения ползуна – прямая постоянная горизонтальная линия).

Сложим векторное уравнение:

VF =VE + VFE

В этой векторной сумме известно первое слагаемое, а VFE – только направление (этот вектор перпендикулярен звену EF). Проводим соответствующую линию на плане скоростей через точку е.

Высчитаем скорость точки F как:

VF = PV f * mV = 52 * 0,014 = 0,728

VFE = ef * mV = 32 * 0,014 = 0,448

В данном разделе мы определили Скорости точек и звеньев механизма методом построения планов скоростей, значения которых сведены в таблице 1.1

Точка Скорость точки, м/с
0
1,4
0,966
VD 0
VE 0,875
VF 0,728

Информация о работе «Анализ нагруженности плоских рычажных механизмов»
Раздел: Физика
Количество знаков с пробелами: 16884
Количество таблиц: 9
Количество изображений: 0

Похожие работы

Скачать
15733
7
1

... Отсюда:  H (1.48)  Н.м (1.49) Полученные данные занесем в таблицу 1.4. Таблица 1.4 Fур, Н Мур, Н×м 28 0.7 2. ПРОЕКТНЫЙ РАСЧЕТ МЕХАНИЗМА НА ПРОЧНОСТЬ В результате динамического анализа плоского рычажного механизма были определены внешние силы, действующие на каждое звено и кинематическую пару. Этими внешними усилиями ...

Скачать
31016
5
2

... напряжений; 4)   определить размеры детали и округлить их до ближайших стандартных, согласно которым будет производится подбор сечений. 2.1 Выбор расчетной схемы В результате динамического анализа плоского рычажного механизма были определены внешние силы, которые действуют на каждое звено и кинематическую пару. Проектный расчет на прочность будем производить для группы Ассура 2-4 данного ...

Скачать
17497
10
2

... 74 R05 24.4 0,005 G4 14,7 Fi4 7.02 R04 7.6 G5 24,5 Fi5 8.125 Fур 0,197 2          ПРОЕКТНЫЙ РАСЧЕТ МЕХАНИЗМА НА ПРОЧНОСТЬ В результате динамического анализа плоского рычажного механизма были определены внешние силы, действующие на каждое звено и кинематическую пару. Этими ...

Скачать
17940
3
0

... H 14 23,4 22 R, H 14 24,2 11,8 1 22,2 2. Расчет элементов кинематических пар на прочность. 2.1. Определение внешних сил, действующих на звенья. В результате динамического анализа плоского рычажного механизма определены внешние силы, действующие на звенья и кинематические пары. Такими внешними усилиями являются силы инерции F , моменты инерции M , а также реакции ...

0 комментариев


Наверх