1.3 Силовой анализ механизма

Метод силового анализа механизма с использованием сил инерции и установления динамического уравнения носит название кинестатического расчета. Этот расчет основан на принципе д'Аламбера, который предполагает, что в общем случае все силы инерции звена, совершающие сложное движение, могут быть сведены к главной векторной силе инерции (которые для каждого звена были рассчитаны в предыдущем пункте) и к паре сил инерции, которая определяется по формуле:

 ,

где  – момент инерции звена относительно оси проходящей через центр масс звена;

– угловое ускорение звена.

Сила инерции звена направлена противоположно ускорению, а момент инерции  в сторону обратную направлению углового ускорения.

Делим механизм на группы Ассура. Таких групп три, и анализ следует начать с наиболее отдаленной группы – группы 4-5.


1.3.1 Силовой анализ группы 4-5

Из условия равновесия мы знаем, что сумма моментов относительно точки F будет равняться нулю, запишем уравнение:

Из данного уравнения можно легко найти неизвестную величину:

 

G4 = mEF*9,8 = 8*9,8 = 78,4

G5 = mF*9,8 = 11*9.8 = 107,8

Рп.с. = 120 Н

 = 284,8

 = 382,8

 = 456

 = 1,0488

Имея все перечисленные данные можем высчитать:

 = (-284,8*0,0035)+(78,4*0,0495)+1,0488/0,05= =78,656

Для построения силового многоугольника выберем масштабный коэффициент, составим векторное уравнение и согласно данным получим силовой многоугольник:

 

mF = G5/PFG5=6 (Н/мм)


Значит при перенесении сил на план силы к длине вектора будут соотносится по принципу в 1 мм – 6 Н

Сила Сила, Н Длинна отрезка, мм

284,8 47,5

382,8 63,8
G4 78,4 13
G5 107,8 18
Рп.с. 120 20

78,656 13

Строим план сил в соответствии с уравнением:

Рп.с.+ + G4+ G5++++=0

Построив все известные силы проведем на силовом многоугольнике  перпендикулярно  (так как нормальная и тангенциальная составляющая ускорения всегда взаимоперпендикулярны), и проведем также , которая замкнет многоугольник.

На пересечении  и  получим точку , в которую будет входить вектор .

Далее, измеряв длину всех искомых отрезков выполним процедуру обратного перевода величин:

 = 38,5мм = 231Н

 = 2 мм = 24 Н

 = 41 мм = 246 Н


Информация о работе «Анализ нагруженности плоских рычажных механизмов»
Раздел: Физика
Количество знаков с пробелами: 16884
Количество таблиц: 9
Количество изображений: 0

Похожие работы

Скачать
15733
7
1

... Отсюда:  H (1.48)  Н.м (1.49) Полученные данные занесем в таблицу 1.4. Таблица 1.4 Fур, Н Мур, Н×м 28 0.7 2. ПРОЕКТНЫЙ РАСЧЕТ МЕХАНИЗМА НА ПРОЧНОСТЬ В результате динамического анализа плоского рычажного механизма были определены внешние силы, действующие на каждое звено и кинематическую пару. Этими внешними усилиями ...

Скачать
31016
5
2

... напряжений; 4)   определить размеры детали и округлить их до ближайших стандартных, согласно которым будет производится подбор сечений. 2.1 Выбор расчетной схемы В результате динамического анализа плоского рычажного механизма были определены внешние силы, которые действуют на каждое звено и кинематическую пару. Проектный расчет на прочность будем производить для группы Ассура 2-4 данного ...

Скачать
17497
10
2

... 74 R05 24.4 0,005 G4 14,7 Fi4 7.02 R04 7.6 G5 24,5 Fi5 8.125 Fур 0,197 2          ПРОЕКТНЫЙ РАСЧЕТ МЕХАНИЗМА НА ПРОЧНОСТЬ В результате динамического анализа плоского рычажного механизма были определены внешние силы, действующие на каждое звено и кинематическую пару. Этими ...

Скачать
17940
3
0

... H 14 23,4 22 R, H 14 24,2 11,8 1 22,2 2. Расчет элементов кинематических пар на прочность. 2.1. Определение внешних сил, действующих на звенья. В результате динамического анализа плоского рычажного механизма определены внешние силы, действующие на звенья и кинематические пары. Такими внешними усилиями являются силы инерции F , моменты инерции M , а также реакции ...

0 комментариев


Наверх