1.3.1. Организация памяти 80286
Как и у процессоров 8086/8088, для обращения к памяти процессор (совместно с внешней схемой) формирует шинные сигналы MEMWR# (Memory Write) и MEMRD# (Memory Read) для операции записи и считывания соответственно. Шина адреса разрядностью 24 бита позволяет адресовать 16 Мб физической памяти, но в реальном режиме доступен только 1 Мб, начинающийся с младших адресов. С программной точки зрения память также организуется в виде сегментов, но управление сегментацией имеет существенные различия для реального и защищенного режимов.
В реальном режиме по адресации памяти декларируется полная совместимость с процессором 8086, который своей 16-битной адресной шиной охватывает пространство в 1 Мб. На самом деле на радость разработчиков программного обеспечения РС, 80286 имеет ошибку, “узаконенною” и в следующих поколения процессоров. При вычислении физического адреса возможно возникновение переполнения, которое с 20-битной шиной адреса просто игнорируется. Например, Seg=FFFFh и EA=FFFF, физический адрес, вычисленный по формуле PA=16*Seg+EA=10FFEF, процессором 8086 трактуется как 0FFEF – адрес, принадлежащий первому мегабайту. Однако на выходе А20 процессора 80286 в этом случае устанавливается единичное значение, что соответствует адресу ячейки из второго мегабайта физической памяти. Для обеспечения полной программной совместимости с 8086 в схему РС был введен специальный вентиль Gate A20, принудительно обнуляющий бит А20 системной шины адреса. Не оценив потенциальной выгоды от этой ошибки, управление вентилем узаконили через программно-управляемы бит контроллера клавиатуры 8042. Когда оперативная память подешевела, а “аппетит” программного обеспечения вырос, в эту небольшую область (64К-16 бит) стали помещать некоторые резидентные программы или даже часть операционный системы, а для ускорения управлением вентилем появились более быстрые способы (Gate A20 Fast Control).
В отличии от 8086 процессор 80286 имеет средства контроля за переходом через границу сегмента, работающие в реальном режиме. При попытке адресации к слову, имеющему смещение FFFh (его старший байт выходит за границу сегмента), или выполнения инструкции, все байты которой не умещаются в одном сегменте, процессор вырабатывает прерывание – исключение 13 (0Dh) – Segment Overrun Exception. При попытке выполнения инструкции ES-CAPE с операндом памяти, не умещаемся в сегменте, вырабатывается исключение 9 – Processor Extension Segment Interrupt.
В защищенном режиме работают не все режимы адресации, допустимые для 8086 и реального режима 80286. Отличия касаются определения сегментов:
сегментные регистры CS, DS, SS и ES хранят не сами базовые адреса сегментов, а селекторы, по которым из таблицы, хранящейся в ОЗУ, извлекаются дескрипторы сегментов;
дескриптор описывает базовый адрес, размер сегмента (1-64 Кб) и его атрибуты;
базовый адрес сегмента имеет разрядность 24 бита, что и обеспечивает адресацию 16 Мб физической памяти.
Селекторы, загружаемые в 16-битные сегментные регистры, имеют три поля:
RPL (биты 0, 1), TI (бит 2) и INDEX (биты 3-15):
RPL (Requested Privilege Level) – запрошенный уровень привилегий;
TI (Table Indicator) – индикатор использования GDT – глобальный (TI=0) или LDT – локальной (TI=1) таблицы дескрипторов;
INDEX – номер дескриптора в таблице.
Дескрипторы хранятся в слове и занимают по четыре смежных слова (8 байт). При загрузке нового значения селектора дескрипторы считываются из ОЗУ и кэшируются во внутренних программно не доступных (и невидимых) регистрах процессора. До смены значения селектора при обращения к памяти используются значения дескрипторов только из кэш-регистров. Обращение к дескрипторам выполняются как заблокированные шинные циклы, что обеспечивает целостность дескрипторов и при наличии других контроллеров шины.
Для функций передачи управления и переключения задач определенны специальные типы дескрипторов
1.3.2. Ввод-вывод
Как и 8086, процессор 80286 позволяет адресовать до 64К однобайтных или 32К двухбайтных регистров в пространстве, отдельном от памяти (команды ввода-вывода вызывают шинные циклы с активными сигналами IORD#, IOWR#). В адресном пространстве ввода-вывода область 00F8-00FF зарезервирована для использования сопроцессором. При операциях ввода-вывода старшие биты адреса (линии А[16:20]) не используются. Адрес устройства либо задается в команде (только младший байт, старший – нулевой), либо берется из регистра DX (полный 16-битный адрес). Строковые команды REP INSB/INSW, REP OUTSB/OUTSW обеспечивают блочный ввод-вывод со скоростью, превышающей аналогичные операции со стандартным контроллером DMA.
В защищенном режиме инструкции ввода-вывода являются привилегированными. Это означает, что они могут исполнятся задачами только с определенным уровнем привилегий, определяемым полем IOPL регистра флагов. Несанкционированная попытка выполнения этих инструкций вызывает исключение 13 – нарушения защиты (знаменитое сообщение “General Protection Error”).
... . В качестве такого разъема AMD решила использовать 462-контактный Socket A, который по своим размерам, да и по внешнему виду похож как на Socket 7, так и на Socket 370. Поэтому, с Socket A процессорами AMD можно использовать старые Socket 7 и Socket 370 кулеры. Единственное, не следует при этом забывать, что тепловыделение Duron несколько превосходит количество тепла, отдаваемое Celeron, поэтому ...
... меньше размер транзистора, тем меньше тепла он излучает при работе. Первые процессоры Итак, разобравшись с некоторыми основными свойствами процессоров, перейдем непосредственно к истории. В далеком 1971 году корпорация Intel явила миру первый микропроцессор, прадедушку того гигагерцового монстра, что стоит у тебя в компьютере. Первый микропроцессор имел индекс 4004. Это был четырехразрядный ...
... оснащать их дополнительными устройствами сотен различных производителей. Итак, после начала широкого внедрения персональных компьютеров в повседневную жизнь, продолжилось быстрое развитие вычислительной техники. Остановимся на наиболее важном элементе: микропроцессор – это эффективный с технологической и экономической точки зрения инструмент для переработки возрастающих потоков информации. Новое ...
... устройство выбор- ки/декодирования должно правильно предсказать для того, чтобы ра- бота устройства диспетчирования/выполнения не оказалась бесполез- ной. Небольшое количество регистров в архитектуре процессоров «Intel» приводит к интенсивному использованию каждого из них и, как следствие, к возникновению множества мнимых зависимостей меж- ду командами, использующими один и тот же регистр ...
0 комментариев