2.2. Процессор 80386

Микропроцессор 80386 имеет два режима работы: режим реальных адресов, называемый реальным режимом, и защищенный режим. При подаче сигнала сброса или при включении питания устанавливается реальный режим, причем 80386 работает как очень быстрый 8086, но, по желанию программиста, с 32-разрядным расширением. В реальном режиме МП 80386 имеет такую же базовую архитектуру, что и МП 8086, но обеспечивает доступ к 32-разрядным регистрам. Механизм адресации, размеры памяти и обработка прерываний МП 8086 полностью совпадают с аналогичными функциями МП 80386 в реальном режиме. Единственным способом выхода из реального режима является явное переключение в защищенный режим. В защищенный режим микропроцессор 80386 входит при установке бита включения защиты (РЕ) в нулевом регистре управления (CR) с помощью команды пересылки (MOV to CR). Для совместимости с МП 80286 с целью установки бита РЕ может быть также использована команда загрузки слова состояния машины LMSW. Процессор повторно входит в реальный режим в том случае, если программа командой пересылки сбрасывает бит РЕ регистра CR.

Полные возможности МП 80386 раскрываются в защищенном режиме. Программы могут исполнять переключение между процессами с целью входа в задачи, предназначенные для режима виртуального МП 8086. Каждая такая задача проявляет себя в семантике МП 8086 (т.е. в отношениях между символами и приписываемыми им значениями независимо от интерпретирующего их оборудования). Это позволяет выполнять на МП 80386 программное обеспечение для микропроцессора 8086 - прикладную программу или целую операционную систему. В то же время задачи для виртуального МП 8086 изолированы и защищены как друг от друга, так и от главной операционной системы МП 80386.


2.3. Процессор 80486

В 1989 г. фирма Intel выпустила микропроцессор Intel-80486. Все процессоры семейства 486 имеют 32-разрядную архитектуру, внутреннюю кэш-память 8 КВ со сквозной записью (у DX4 -16 КВ). Модели SX не имеют встроенного сопроцессора. Модели DX2 реализуют механизм внутреннего удвоения частоты (например, процессор 486DX2-66 устанавливается на 33-мегагерцовую системную плату), что позволяет поднять быстродействие практически в два раза, так как эффективность кэширования внутренней кэш-памяти составляет почти 90 процентов. Процессоры семейства DX4 - 486DX4-75 и 486DX4-100 предназначены для установки на 25-ти и 33-мегагерцовые платы. По производительности они занимают нишу между DX2-66 и Pentium-60/66, причем быстродействие компьютеров на 486DX4-100 вплотную приближается к показателям Pentium 60. Напряжение питания составляет 3,3 вольта, то есть их нельзя устанавливать на обычные системные платы. Процессор 486DX4-75 предназначен, прежде всего, для использования к компьютерам типа Notebook, а 486DX4-100 - в настольных системах.


2.4. Процессор Pentium

В 1993 г. Intel анонсировала о новом детище – процессоре Pentium. Процессор Pentium является одним из самых мощных в настоящее время. Он относится к процессорам с полным набором команд, хотя его ядро имеет риск-архитектуру. Это 64-разрядный суперскалярный процессор (то есть выполняет более одной команды за цикл), имеет 16 КВ внутренней кэш-памяти - по 8 КВ отдельно для данных и команд, встроенный сопроцессор. Несколько слов о процессорах семейства OverDrive. В основном это процессоры с внутренним удвоением частоты, предназначенные для замены процессоров SX. Что касается широко разрекламированного в свое время процессора OverDrive на основе Pentium (так называемый P24T или Pentium SX), то сроки его выпуска неоднократно срывались. Сейчас начало выпуска перенесено на последнюю четверть текущего года. Хотя на рынке представлено очень много системных плат, предназначенных для установки кроме 486 процессоров и процессора Р24Т, использовать его на этих платах, скорее всего, будет нельзя, так как никакого тестирования плат с этим процессором изготовители не проводят ввиду его отсутствия, а ориентируются при изготовлении только на опубликованную фирмой Intel спецификацию. Представители фирмы Intel заявили недавно, что существуют серьезные сомнения в работоспособности большинства этих плат в связи с недостаточной проработкой вопросов, связанных с перегревом процессоров. Поскольку при работе с существующим программным обеспечением процессоры Pentium не достигают максимального быстродействия, фирма Intel для оценки производительности своих процессоров предложила специальный индекс - iCOMP (Intel COmparative Microprocessor Performance), который, по ее мнению, более точно отражает возрастание производительности при переходе к новому поколению процессоров (некоторые из выпущенных уже моделей компьютеров на основе Pentium при выполнении определенных программ демонстрируют даже меньшее быстродействие, чем компьютеры на основе 486DX2-66, это связано как с недостатками конкретных системных плат, так и с не оптимизированностью программных кодов).


Модель

Индекс iCOMP

486SX2-50 180
486DX2-50 231
486DX2-66 297
486DX4-75 319
486DX4-100 435

Pentium 60

510
Pentium 66 567
Pentium 90 735
Pentium 100 815

Более того, именно величина производительности с использованием индекса iCOMP используется фирмой Intel в новой системе маркировки процессоров Pentium. например, 735\90 и 815\100 для тактовой частоты 90 и 100 МГц. Кроме фирмы Intel, на рынке широко представлены другие фирмы, выпускающие клоны семейств 486 и Pentium. Фирма AMD (Advanced Micro Devices) производит 486DX-40, 486DX2-50, 486DX2-66. Процессоры 486DX2-80 и 486DX4-120 обеспечивают полную совместимость со всеми ориентированными на платформу Intel программными продуктами и такую же производительность, как и аналогичные изделия фирмы Intel (при одинаковой тактовой частоте). Кроме того, они предлагаются по более низким ценам, а процессор на 40 МГц, отсутствующий в производственной программе Intel, конкурирует с 486DX-33, превосходя его по производительности на 20 процентов при меньшей стоимости. Фирма Cyrix разработала процессоры М6 и М7 (аналоги 486SX2 и 486 0DX 2) на тактовые частоты 33 м 40 МГц, а также с удвоением частоты DX2-50 и DX2-66. Они имеют более быстродействующую внутреннюю кэш-память 8 КВ с обратной записью и более быстрый встроенный сопроцессор. По некоторым операциям производительность выше, чем у процессоров фирмы Intel, по некоторым - несколько ниже. Соответственно, существенно различаются и результаты на разных тестирующих программах. Цены на 486 процессоры Cyrix значительно ниже, чем на Intel и AMD. По оценкам Intel, эффективность Pentium при работе с таким программным обеспечением составляет около 70 процентов, Cyrix же обещает 90, так как архитектура М1 более "рисковая": он имеет 32 регистра вместо 8 и систему их динамической переадресации для обеспечения совместимости. В то же время М1 по операциям с плавающей точкой уступает процессору фирмы Intel. Собственные варианты процессоров семейства 486 - 486SX-33,486SX-40, 486SX-80, 486DX-40 предлагает фирма UMC. Они полностью совместимы с процессорами Intel. Из-за патентных ограничений они не поставляются в США. Первый клон процессора Pentium - изделие под названием 586 - выпустила фирма NexGen. Этот 64-разрядный процессор рассчитан на работу на тактовых частотах 60 и 66 МГц, построен на основе запатентованной суперскалярной архитектуры RISC86 и полностью совместим с семейством 80х86. Напряжение питания - 3,3 вольта. Стоимость его существенно ниже, чем у Pentium. Для самых простых систем фирмой Texas Instruments выпускала дешевые, но эффективные процессоры 486DLC, которые, занимая промежуточное положение между 80386 и 80486 семейством (они выполнены в конструктиве 386 процессора, обеспечивают производительность на уровне 80486 процессора при цене 80386. Новая версия - 486SXL с увеличенной до 8 КВ внутренней кэш-памятью еще ближе приближается к характеристикам 486 семейства. Все большую популярность завоевывали риск-процессоры семейства Power PC 601 (IBM, Apple, Motorola) , которые имеют отличную от Intel архитектуру (в основе - архитектура Power фирмы IBM с внутренней кэш-памятью 32 КВ). Полагают, что именно конкуренция между Power PC и Pentium является самым существенным фактором для развития рынка процессоров и персональных компьютеров. Power PC 601 примерно в два раза дешевле, чем Pentium, потребляет в два раза меньшую мощность и превосходит Pentium по производительности, особенно по операциям с плавающей точкой. Сначала на процессоре 601 была реализована только система 6000 фирмы IBM и PowerMac фирмы Apple. В настоящее время большинство производителей компьютеров имеют свои варианты систем на базе Power PC, однако, решение об их производстве будет определяться, прежде всего, складывающейся конъюнктурой.

Объем и сложность данных, обрабатываемых современными компьютерами, стремительно увеличивается. Новые средства связи, видео - и аудиоприложения выдвигают повышенные требования к производительности микропроцессора. ММХ - технология разработана для ускорения мультимедиа и коммуникационных программ. Она включает в себя новые команды и типы данных, что позволяет создавать приложения нового уровня. Технология основана на параллельной обработке данных. При этом сохраняется полная совместимость с существующими операционными системами и программным обеспечением. ММХ – технология – это самое значительное усовершенствование со времени создания процессора Intel-80386, т.е. создания 32 – разрядной архитектуры.

В процессоры семейства Р5 (Pentium и Pentium MMX) были добавлены следующие команды:

CMPXCHG8B (compare and exchange 8 bytes)

CPUID (CPU identification)

RDTSC (read time-stamp counter)

RDMSR ( read model-specific register)

WRMSR (write model-specific register)

RSM (resume from SSM)

Форма команды MOV, которая обращалась к регистрам тестирования, удалена из процессоров Р5 и всех последующих. Функция регистров тестирования теперь выполняют регистры MSR (Model Specific Register). Задействован новый регистр управления CR4. В регистр EFLAGS добавлены следующие флажки:

VIF (virtual interrupt flag)

VIP (virtual interrupt pending)

ID (identification flag)


Рисунок 1. Формат регистра EFLAGS в процессорах Р5

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 0 0 ID VIP VIF AC VM RF 0 IIT IOPL IOPL OF DF IF TF SF ZF 0 AF 0 PF 1 CF

Изменения в прерываниях:

При попытке записать единицу в зарезервированный бит специальных регистров генерируется исключение #GP – нарушение общей защиты.

При обнаружении единицы в зарезервированном бите элемента каталога страниц или элемента таблицы страниц генерируется исключение #PG –страничное нарушение.

Добавлено новое исключение #18 – Machine Check Exception. Это исключение предназначено для сообщения об аппаратных ошибках. Исключение является специфическим для данной модели процессора и может быть изменено в последующих моделях. Управление исключением осуществляется через MSR-регистры.

Конвейер Pentium построен так, что позволяет выполнять до двух команд. Прозрачный для программ механизм предсказания ветвлений позволяет уменьшить задержки конвейера при переходах. В процессоре Pentium MMX в конвейер добавлены новые стадии. P5 может декодировать до двух инструкций за один такт и направлять их по двум логическим каналам (U и V – каналы). На этапе декодирования процессор проверяет, могут ли две команды выполнятся параллельно. Если да, то первая команда направляется в U-канал конвейера, а вторая – в V – канал. В противном случае только одна команда направляется в U – канал и ничего не поступает в V – канал.

На стадии предвыборки (PF – pre fetch) команды выбираются из кэша команд. Далее они поступают на стадию выборки (F – fetch). Здесь происходит разделение выбранной порции кода на отдельные команды, а также декодирование любых префиксов. Между стадией (F) и стадией (D1) находится FIFO – буфер. В нем может содержаться до четырех инструкций. FIFO – буфер прозрачен, т.е. он не отнимает времени, когда он пуст. В каждом такте из стадии (F) в FIFO – буфер может выпускаться до двух команд. Пара инструкций поступает (если это возможно) из FIFO на стадию (D1). Так как средняя скорость выполнения команд меньше чем две команды за такт, то FIFO обычно заполнен. Следовательно, FIFO может буферизировать задержки, возникающие на стадиях (PF) и (F), тем самым, предотвращая по возможности обеднение (когда в FIFO находится одна команда) или полную остановку конвейера. Если в одном из каналов возникла задержка, то команды, следующие за застрявшей командой, не могут продвигаться дальше, даже если застрявшая команда находится в другом канале. Например, параллельно по двум каналам следуют две команды, одна из которых требует один такт на стадии (EX), а другая – два такта. Пусть первая команда находится в V – канале, а вторая - в U – канале. Попав на стадию (EX), первый такт эти команды выполняют вместе. В следующем такте команда в U – канале остается на стадии (EX), а команда в V – канале переходит на следующую стадию, при этом на ее место ничего не поступает, т.е. параллельно с двухтактной командой не могут выполняться две однотактные. Решение о спаривании команд принимается только один раз при входе в конвейер. Это один из главных недостатков архитектуры P5.

PF – предвыборка команд.

F – определение границ команд.

D1 – декодирование команд.

D2 – генерация линейного адреса.

EX : INT – чтение операндов из памяти, выполнение команды, запись операндов в память.

MMX – чтение операндов из памяти, далее переход на стадию Mex.

FPU – чтение операндов из памяти и регистров, далее переход на стадию X1, преобразование данных ко внешнему формату, запись в память (FST).

WB – запись результата в регистр.

Mex – выполнение MMX – команд. Первый такт команды умножения.

Wb/M2 – запись результата однотактных команд. Второй такт умножения.

M3 – третий такт умножения.

Wmul – запись результата умножения.

X1 – преобразование данных ко внутреннему формату, запись в регистр.

X2 – выполнение FPU – команд.

WF – округление и запись результата в регистр.

В отличие от целочисленных команд, которые целиком выполняются на стадии (EX), а затем уходят на свои стадии, где продолжаются выполняться дольше. FPU – команды не могут спариваться с целочисленными командами в начале конвейера, но , после того как FPU – команда уйдет на стадию (X1), следующие за ней целочисленные команды смогут продвигаться дальше. Например, если запустить в конвейер сначала команду Fmul, то следующие за ней целочисленные команды смогут продолжать выполняться параллельно с Fmul. Если же запустить команду Mul, то она застрянет на стадии (EX), блокировав дальнейшее продвижение следующих команд по обоим каналам.

В процессоры семейства Р6 (Pentium Pro и Pentium II) добавлены следующие команды:

CMOVcc (Conditional Move) – выполняет условную передачу данных

FCMOVcc (Floating – point Conditional Move) – выпоняет условную предачу FPU-регистра в вершину стека [ST(0)]

FCOMI (Floating – point Compare and set EFLAGS) – сравнивает значение двух FPU – регистров и устанавливает флажки регистра EFLAGS в соответствии с результатом.

RDPMC (Read Performance Monitoring Counters) – считывает содержимое специфических счетчиков для мониторинга производительности процессора.

UD2 (Undefined) – генерирует исключение недействительной операции).

Конвейер процессоров семейства Р6 существенно отличается от конвейера процессоров семейства Р5. В Р6 используется принципиально новый подход к выполнению команд. Применен ряд новых приемов для предотвращения заторов конвейера. Например, внеочередное выполнение команд (out-of-order execution), переименование регистров. Конвейер Р6 состоит из трех частей:

In-Order Issue Front End. На этом этапе происходит выборка команд из памяти и декодирование в микрооперации.

Out-of-Order Core. На этом этапе процессор выполняет микрооперации. Выполнение может происходить вне очереди.

In-Order Retirement unit. На этом этапе происходит удаление команд с конвейера.


Следует заметить, что в семействе Р5 допущены следующие ошибки:

Микропроцессоры Pentium раннего производства, ошибка связанная с операцией FDIV.

Микропроцессоры Pentium и Pentium MMX с ошибкой F0, т.е. процессоры «зависают» при выполнении последовательности четырех байтов F0, 0F, C7, C8.



Информация о работе «Процессоры. История развития. Структура. Архитектура»
Раздел: Информатика, программирование
Количество знаков с пробелами: 94709
Количество таблиц: 9
Количество изображений: 3

Похожие работы

Скачать
47142
1
0

... . В качестве такого разъема AMD решила использовать 462-контактный Socket A, который по своим размерам, да и по внешнему виду похож как на Socket 7, так и на Socket 370. Поэтому, с Socket A процессорами AMD можно использовать старые Socket 7 и Socket 370 кулеры. Единственное, не следует при этом забывать, что тепловыделение Duron несколько превосходит количество тепла, отдаваемое Celeron, поэтому ...

Скачать
27829
0
1

... меньше размер транзистора, тем меньше тепла он излучает при работе. Первые процессоры Итак, разобравшись с некоторыми основными свойствами процессоров, перейдем непосредственно к истории. В далеком 1971 году корпорация Intel явила миру первый микропроцессор, прадедушку того гигагерцового монстра, что стоит у тебя в компьютере. Первый микропроцессор имел индекс 4004. Это был четырехразрядный ...

Скачать
65135
0
1

... оснащать их дополнительными устройствами сотен различных производителей. Итак, после начала широкого внедрения персональных компьютеров в повседневную жизнь, продолжилось быстрое развитие вычислительной техники. Остановимся на наиболее важном элементе: микропроцессор – это эффективный с технологической и экономической точки зрения инструмент для переработки возрастающих потоков информации. Новое ...

Скачать
43133
1
6

... устройство выбор- ки/декодирования должно правильно предсказать для того, чтобы ра- бота устройства диспетчирования/выполнения не оказалась бесполез- ной. Небольшое количество регистров в архитектуре процессоров «Intel» приводит к интенсивному использованию каждого из них и, как следствие, к возникновению множества мнимых зависимостей меж- ду командами, использующими один и тот же регистр ...

0 комментариев


Наверх