МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ
РОССИЙСКОЙ ФЕДЕРАЦИИ
ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
Кафедра САПР
Пояснительная записка
к курсовому проекту по дисциплине
“Дискретная математика”
На тему: “Алгоритм раскраски графа (точный)"
Выполнил: студентка гр. 06ВА-1
Молоткова Е.
Принял: к.т.н., доцент Валько А.Ф.
Пенза 2007г.
СОДЕРЖАНИЕ
Аннотация
1. Теоретическая часть
2. Алгоритм, использующий метод Магу - Вейссмана
2.2 Разработанный алгоритм
3. Описание программы
3.1 Общие сведения
3.2 Вызов и загрузка
3.3 Функциональное назначение
3.4 Описание логической структуры программы
3.5 Инструкция пользователю
3.6 Решение контрольных примеров
Заключение
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
ПРИЛОЖЕНИЕ
Аннотация
В настоящей пояснительной записке приведено описание алгоритма раскраски графа (точный). Изложены вопросы проектирования структуры программы и данных. Разработаны схемы алгоритмов решения задачи. Разработана и отлажена программа, реализующая представленные алгоритмы на языке Visual C. Представлены результаты решения контрольных примеров, выполненные с помощью разработанной программы на ПК Intel core 2 Duo.
Пояснительная записка содержит 34 страницы, 5 рисунков, 4 использованных источника, приложения.
1. Теоретическая часть
Графом,в общем случае, называются два множества, находящиеся между собой в некотором отношении: G=(V,Е), где V – множество вершин, Е – множество связей между ними . Вершины графа изображаются точками, а связи между ними – линиями произвольной конфигурации.
Связь неупорядоченной пары вершин называется ребром, упорядоченной- дугой. Граф, у которого все вершины соединены дугами называется ориентированным. Граф, у которого все вершины соединены ребрами называется неориентированным, если в графе присутствуют и ребра и дуги, то такой граф называется смешанным.
Две вершины называются смежными, если они определяют дугу (ребро), и две дуги называются смежными, если они имеют общую вершину. Вершина инцидентна дуге (ребру), если она является началом или концом этой дуги(ребра). Аналогично, дуга (ребро) инцидентна вершине, если она входит или выходит из этой вершины. Число дуг(ребер), инцидентных некоторой вершине, называют локальной степенью данной вершины.
Граф, в котором любая пара вершин соединена ребром называется полным. Полный граф обычно обозначают через Кn (n – число вершин в графе).
Число ребер полного графа m=n*(n-1)/2. Полный подграф G`=(X`,U`)графа G=(Х,U), X`εX называется максимальным полным подграфом (МПП) или кликой , если этот подграф не содержится в большем (по числу вершин) полном подграфе.
Максимальный полный подграф, содержащий наибольшее число вершин из всех МПП графа называется наибольшим полным подграфом (НПП). Число вершин наибольшего полного подграфа называется плотностью графа – φ(G). Если две любые вершины подмножества X` графа G(Х,U), где X`εX не смежны, то подмножество X` называется внутренне устойчивым.
Подмножество ψi X графа G(Х,U) называется максимальным внутренне устойчивым подмножеством (МВУП), или независимым подмножеством (НП), если добавление к нему любой вершины xjεХ делает его не внутренне устойчивым. Подмножество Yi будет определяться как хjεψi (Гхj uψi =)
МВУП различаются по числу входящих в них элементов. МВУП, содержащее наибольшее число элементов (вершин), называют наибольшим (предельным). Мощность НВУП (число вершин наибольшего ВУП) называется числом внутренней устойчивости
h (G) = |mах ψi |, где ψiεψ, ψ-семейство всех МВУП.
Число внутренней устойчивости называет также неплотностью графа.
Задачи определения наибольших полных подграфов и НВУП являются дополнительными друг к другу. Наибольшему полному подграфу графа G=(Х,U) соответствует наибольшее ВУП в графе G=(Х,U), где Uполн\U, Uполн – множество ребер полного графа, построенного на n вершинах. Аналогичные рассуждения могут быть сделаны и для максимальных НП и МВУП.
Все эти задачи относятся к так называемым NP полным задачам, временная сложность которых экспоненциальна относительно входа (числа вершин или ребер графа).
Согласно классификации всех задач теории графов по их сложности, приведенной в основополагающей работе Э. Рейнгольда и других, задачи определения МВУП и МПП (нахождение клик) графа по сложности относятся к четвертому классу задач, для которых не существует и не может существовать точного полиноминального алгоритма, так как задачи этого класса обязательно экспоненциальные относительно входа. Задачи определения НПП и МВУП (наибольшей клики) относятся к третьему классу, для которого открытие полиноминального алгоритма возможно.
... набором типовых подсхем - Автоморфизм графов конструктивное перечисление структурных изомеров для производных органических соединений синтез тестов цифровых устройств 2.2. Нахождение кратчайших путей в графе Начальные понятия Будем рассматривать ориентированные графы G = <V, E>, дугам которых приписаны веса. Это означает, что каждой дуге <u, ...
... практичных алгоритмов оптимизированного перебора, позволяющих за разумное время осуществлять распараллеливание достаточно больших участков. Анализ работ, посвященных оптимизации кода для процессоров с параллелизмом на уровне команд показывает, что для достижения наилучших результатов необходимо применение комплекса оптимизаций, среди которых можно выделить следующие классы. Преобразования циклов ...
... канальных трассировщиков. Иными словами - ГБД не должна содержать циклических конфликтов. 3. Разработка информационного содержания базы знаний для решения вертикальных конфликтов БЗ для решения вертикальных конфликтов (ВК) в процессе трассировки строится на основе продукционных правил. Ввиду того, что возможны различные варианты вертикальных конфликтов, целесообразным представляется проведение ...
... Рассела и во многом базируется на работе Бертрана Рассела и Альфреда Уайтхэда «Principia Mathematica» (этот фундаметальный трёхтомник математической логики до сих пор не издан на русском языке)[8]. Заключение Прародителем информатики является кибернетика, основанная американским математиком Норбертом Винером, опубликовавшим в 1948 году одноименную книгу. Основоположником ...
0 комментариев