МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Учреждение образования

"Гомельский государственный университет

имени Франциска Скорины"

Математический факультет

Кафедра алгебры и геометрии


Курсовая работа

 

БИПРИМАРНЫЕ ГРУППЫ

Исполнитель:

студентка группы H.01.01.01 М-33

Стародубова Н.С.

Научный руководитель:

доктор физико-математических наук,

профессор кафедры Алгебры и геометрии

Монахов В. С.

Гомель 2003


Содержание

Введение

1.Основные обозначения

2. Разрешимость факторизуемой группы с разложимыми факторами

3. О произведении 2-разложимой группы и группы Шмидта

4. Произведение бипримарной и 2-разложимой групп

5. Произведение бипримарной и примарной групп

6. Доказательство теоремы (3)

Заключение

Список литературы


Введение

В данной курсовой работе приводятся свойства конечных групп, являющихся произведением двух групп, а именно являющихся произведением двух групп, одна из которых группа Шмидта, а вторая 2-разложимая, произведением бипримарной и 2-разложимой групп.

В третьем пункте данной курсовой работы доказываются следующие теоремы:

Теорема. Пусть  и  --- подгруппы конечной группы  и пусть . Если подгруппы  и  -разложимы для каждого , то  разрешима.

Теорема. Пусть  и  --- подгруппы конечной группы  и пусть . Предположим, что  и  --- -замкнуты для каждого . Если  и  -разложимы и -разложимы, то  разрешима.

В четвертом пункте доказазываются приведенные ниже теоремы.

Теорема. Пусть  есть группа Шмидта,  --- 2-разложимая группа, порядки  и  взаимно просты. Если  и  --- конечная неразрешимая группа, то , ,  и  --- простое число  или  для некоторого простого .

Теорема. Пусть  --- группа Шмидта;  --- -разложимая группа, где . Если  и  --- простая группа, то ,  или  и  --- простое число.

В пятом пункте доказываются следующие теоремы:

Теорема. Пусть конечная группа  является произведением своих подгрупп  и  взаимно простых порядков, и пусть  --- бипримарная группа, а  --- 2-разложимая группа четного порядка. Предположим, что в  есть неединичная циклическая силовская подгруппа . Тогда, если  неразрешима, то  изоморфна  или .

Теорема. Пусть неразрешимая группа  является произведением бипримарной подгруппы  и примарной подгруппы . Тогда, если среди силовских подгрупп группы  есть циклическая, то  изоморфна одной из следующих групп:

1) ;

2) ;

3) ;

4) ;

5) ;

6) , где  --- силовская 3-подгруппа;

7) , порядок  равен , а .



Информация о работе «Бипримарные группы»
Раздел: Математика
Количество знаков с пробелами: 33441
Количество таблиц: 1
Количество изображений: 0

Похожие работы

Скачать
22282
1
0

...  множество всех простых делителей натурального числа  множество всех простых делителей порядка группы  подгруппа Фиттинга группы  наибольшая инвариантная -подгруппа группы  индекс подгруппы  в группе   2. Инвариантные подгруппы бипримарных групп   1. Введение. Две работы (1) и (2), написанные Бернсайдом в 1904 г., посвящены ...

Скачать
31839
0
0

... -подгруппами, индексы которых взаимно просты, наследственно насыщенным формациям В данном разделе в классе конечных разрешимых групп получена классификация наследственных насыщенных формаций , замкнутых относительно произведения обобщенно субнормальных -подгрупп, индексы которых взаимно просты. 2.1 Теорема [18-A]. Пусть  --- наследственная насыщенная формация, --- ее максимальный внутренний ...

Скачать
33601
0
0

... , , ; 4) ,  или ,  или  соответственно. В каждом параграфе подробно изучена соответствующая тема с теоремами леммами и доказательствами последних. 1. Конечные группы со сверхразрешимыми подгруппами четного индекса Строение конечных минимальных несверхразрешимых групп хорошо известно. В частности, они дисперсивны и их порядки делятся не более чем на три различных простых числа. Если условие ...

Скачать
47265
0
0

... и Следовательно, Пусть Тогда  делит  для каждого  и поэтому делит , т.е. . Для  имеем , откуда . Теорема доказана. Лемма 1.6 Ошибка!. Если  – нормальная подгруппа конечной группы  и  – силовская  – подгруппа из , то . Доказательство. Пусть  – произвольный элемент из . Так как , то  и по следствию 1.4 подгруппы  и  сопряжены в . Поэтому, существует элемент   ...

0 комментариев


Наверх