Дипломная работа

 

"Полунормальные подгруппы конечной группы"


Содержание

Введение

1 Силовские подгруппы конечных групп

2 Полунормальные подгруппы

2.1 Свойства супердобавлений

2.2 Супердобавления к максимальным подгруппам

2.3 Супердобавления к силовским подгруппам

3 Факторизации групп дисперсивными и сверхразрешимыми подгруппами

3.1 Силовские множества и их свойства

3.2 Дисперсивность и сверхразрешимость факторизуемых

групп

Заключение

Список использованных источников


Введение

В теории конечных групп видное место занимают результаты, связанные с исследованием существования дополнений к выделенным системам подгрупп. В классических работах Шура, Цассенхауза, Гашюца, Л.А. Шеметкова устанавливаются условия, при которых существует дополнение к нормальной подгруппе. В 1968 году в работе для получения существования дополнений к нормальной подгруппе Л.А. Шеметков стал рассматривать добавления. В настоящее время под минимальным добавлением к подгруппе  в группе  понимается такая подгруппа , что , но  для любой собственной подгруппы  из . Очевидно, что любая подгруппа конечной группы обладает минимальным добавлением. Ясно также, что дополнение является частным случаем минимального добавления.

Известно, что конечные разрешимые группы можно охарактеризовать как конечные группы, у которых дополняемы все силовские подгруппы. Эта теорема Ф. Холла явилась источником развития одного из направлений теории групп, состоящего в исследовании строения групп с выделенными системами дополняемых подгрупп. Как отмечает в своей монографии С.Н. Черников: «Изучение групп с достаточно широкой системой дополняемых подгрупп обогатило теорию групп многими важными результатами». К настоящему времени выделены и полностью изучены многие новые классы групп. При этом наметилась тенденция к обобщениям как самого понятия дополняемой подгруппы, так и способа выделения системы дополняемых подгрупп. Системы дополняемых подгрупп выделялись, например, с помощью таких понятий как примарность, абелевость, цикличность, нормальность и других свойств конечных групп и их комбинаций, а вместо дополняемости рассматривались –дополняемость, –плотность подгруппа, строго содержащаяся между ними), и др.

Однако условие существования дополнений к отдельным подгруппам является достаточно сильным ограничением. Далеко не все подгруппы обладают дополнениями. Вместе с тем каждая подгруппа обладает минимальным добавлением. Поэтому для исследования строения конечных групп с системами добавляемых подгрупп необходимо вводить дополнительные ограничения на минимальные добавления.

Квазинормальной называют подгруппу  группы , которая перестановочна со всеми подгруппами группы . Ясно, что нормальные подгруппы всегда квазинормальны.

Минимальное добавление  к квазинормальной подгруппе  группы  обладает следующим свойством: если  – подгруппа из , то  – подгруппа группы . Это наблюдение позволяет ввести следующее определение: минимальное добавление  к подгруппе  группы  назовём супердобавлением, если  является подгруппой для любой подгруппы  из . Ясно, что нормальные и квазинормальные подгруппы обладают супердобавлениями. В симметрической группе  силовская –подгруппа обладает супердобавлением, но не является квазинормальной подгруппой. Кроме того, не каждая подгруппа группы обладает супердобавлением.

Всякую факторизуемую группу  можно рассматривать как группу с подгруппой  и её добавлением , и как группу с подгруппой  и её добавлением . Известно, что группа  с нормальными сверхразрешимыми подгруппами  и  не всегда является сверхразрешимой. Отсюда следует, что формация всех сверхразрешимых групп не является классом Фиттинга. Известны следующие случаи, ведущие к сверхразрешимости группы  с нормальными сверхразрешимыми подгруппами  и :

– подгруппы  и  имеют взаимно простые индексы;

– группа  имеет нильпотентный коммутант;

– подгруппы из  перестановочны со всеми подгруппами из , а подгруппы из  перестановочны со всеми подгруппами из . Подобная тематика разрабатывалась и в статье А.Ф. Васильева и Т.И. Васильевой.

В настоящей дипломной работе рассматриваются следующие вопросы: строение группы с максимальной полунормальной подгруппой и группы с полунормальной силовской подгруппой; признаки дисперсивности и сверхразрешимости факторизуемых групп с перестановочными циклическими подгруппами в факторах.



Информация о работе «Полунормальные подгруппы конечной группы»
Раздел: Математика
Количество знаков с пробелами: 47265
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
25830
0
0

... такой параллелизм устраняется на основе введенного выше понятия слабой квазинормальности. Таким образом, задача изучения групп с заданной системой слабо квазинормальных подгрупп вполне актуальна, ее реализации посвящена данная работа. 1. Определение и общие свойства слабо нормальных подгрупп Определение. Подгруппа  группы  называется слабо нормальной в  подгруппой, если существует такая ...

Скачать
91735
2
0

... как следствие первичных дефектов, и проблемах социальной адаптации аномальных людей к обществу здоровых. Проблема «норма—аномальность» далеко выходит за пределы медицины и является одной из актуальных проблем человекознания. Мы рассмотрели лишь некоторые подходы к ее решению. Психология развития представлена многочисленными теориями, акцентирующими внимание на различных сторонах этого феномена. ...

0 комментариев


Наверх