2. Влияние регуляторов роста растений на фитосанитарное состояние посевов сои сорта Вилана: учеты проводились по общепринятым методикам.
Учет порожаемости сои болезнями: на учетной делянке осматривалось по 100 растений, определялся процент поражения растений болезнями
Определение степени заселенности сои вредителями: по двум сторонам поля или по гонам посева, осматривают растения и записывают, какие вредители встречаются и в каком количестве. Частоту встречаемости вредителя отмечают глазомерно по шкале:
единично – вредитель встречается на отдельных единичных растениях (менее 1 %);
редко – на 1 – 11 % растений;
часто – 11 – 30 % растений;
очень часто – более 31 % растений;
сплошь – все растения заселены вредителями.
Учет заселенности посевов сои луговым мотыльком: осматривают по 50-100 растений подряд, в 6-10 местах по диагонали или по двум параллельным линиям, отступая 5 м от края поля. Учитывается процент поврежденных растений.
Учет заселенности посевов сои долгоносиками: учитывается количество жуков на 10 взмахов сачком, или осматривают по 50 растений в 6-10 местах поля.
Учет заселенности посевов сои полевым клопиком: Осматривают растения на отрезке рядка в 1 м погонный, в 10 местах по диагонали или параллельным линиям поля. Подсчитывается количество клопиков и указывается среднее их число на 1 погонный метр, или количество клопиков на 10 взмахов сачком.
3. Анализ растительных проб проводили, начиная с фазы третьего настоящего листа. В двукратной повторности по 0,5 м 2:
- сырая и абсолютно сухая масса по органам растений. Сухая масса определялась путем высушивания растительных проб в сушильном шкафу до постоянного веса в течение 8 часов при температуре 105 оС;
- площадь листьев определялась методом высечек.
На основании полученных данных рассчитывались:
- динамика нарастания листовой поверхности, тыс. м2 /га;
- нарастание сухой биомассы, т/га;
- чистая продуктивность фотосинтеза определяется по формуле Кидда, Бригса и Веста (1921 г.) (1):
ЧПФ =М2 – М1 : ½ (Л1 + Л2) *Т, (1)
где ЧПФ - чистая продуктивность фотосинтеза, г/м2 в сутки;
М2 - М1 – средняя масса растений в конце и начале учитываемого периода Т;
½ (Л1 + Л2) – средняя площадь листьев одного растения в начале и конце учитываемого периода Т.
4. Определение аскорбиновой кислоты: метод определения аскорбиновой кислоты основан на ее редуцирующих свойствах. Под действием аскорбиновой кислоты раствор 2,6 – дихлорфенолиндофенола, имеющий синюю окраску, восстанавливается в бесцветное соединение.
Ход анализа: навеску исследуемого материала 1-5 г. растирают с 10 мл 1 % соляной кислоты до образования гомогенной массы. Полученную массу сливают в колбу, ступку споласкивают щавелевой кислотой и выливают в ту же колбу. Колбу встряхивают и оставляют стоять 5 минут, затем содержимое колбы отфильтровывают. Для титрования из полученного фильтрата берут пипеткой в стакан 2 параллельные порции по 10 мл и титруют из микробюретки 0,001 н. раствором краски Тильманса до появления ясно розового окрашивания, не исчезающего в течение 0,5-1 минуты.
Количество аскорбиновой кислоты в образце рассчитывают по формуле (2):
Х = (А * Т * В * 100) / (Р * С), (2)
где
Х – содержание аскорбиновой кислоты, мг на 100 г. сырого вещества;
А – количество краски, пошедшее на титрование, мл;
Т – титр краски, равный 0,088. 1 мл краски соответствует 0,088 мг аскорбиновой кислоты;
В – общий объем экстракта (50 мл);
Р – навеска, г;
С – количество экстракта, взятое для титрования, мл.
5. Анализ структуры урожая проводился по пробным снопам, взятым перед уборкой. Снопы отбирали на технических участках делянки по 5 растений с двух несмежных повторностей.
При разборе снопов анализировали следующие показатели:
- масса одного растения, г;
- высота растения, см;
- высота прикрепления нижнего боба, см;
- количество боковых ветвей, шт./раст.;
- количество бобов на центральном стебле, шт.;
- количество бобов на боковых ветвях, шт.;
- количество семя и их масса на центральном стебле, шт. и г;
- количество семян и их масса на боковых ветвях, шт. и г;
- масса 1000 семян, г.
6. Уборка урожая – однофазная, комбайном “САМПО-500”.
7. Для определения содержания масла, белка с каждой делянки отбирали семенной образец массой 1 кг.
8. Статистическая обработка урожайных данных проводилась дисперсионным методом по Доспехову Б. А. (1985).
Агротехника в опытах соответствовала принятой в данной зоне. Приёмы обработки почвы направлены на создание оптимального сложения пахотного слоя, выравнивание поверхности и очищение полей от сорняков.
Для сои поддержание почвы в достаточно рыхлом состоянии имеет значение не только для беспрепятственного развития корневой системы, но и для активной жизнедеятельности клубеньковых бактерий.
Способы обработки и почвообрабатывающие орудия выбирали с учетом состояния плотности почвы после уборки предшествующей культуры, степени и характера засоренности поля. Предшественник сои – озимая пшеница. Сразу после уборки предшественника проводили дисковое лущение (ЛДГ-10) на глубину 7-8 см. Вспашка проводилась в конце октября на глубину 25-27 см, плугом ППЛ-6-35 в агрегате с трактором Т-150.
Предпосевная обработка почвы под посев сои состояла из двух культиваций. Ранняя культивация зяби проводилась поперек вспашки с целью выравнивания поверхности и уничтожения сорняков и падалицы озимых (пшеница) на глубину 8-10 см. Вторая предпосевная культивация проводилась с боронованием на глубину 5-7 см.
К посеву приступали при температуре посевного слоя почвы 14 оС. Посев проводили 6 мая трактором Т-70М в агрегате с сеялкой СПЧ-6, с шириной междурядья 70 см, глубиной заделки семян 4-6 см.
В целях получения высокого урожая сои необходимо создавать благоприятные условия для роста и развития растений в период вегетации.
Соя очень чувствительная культура к засоренности почвы, поэтому сразу же после посева проводили боронование средними боронами (БЗСС-1,0), агрегатируемыми трактором Т-70М поперек рядков, для уничтожения прорастающих сорняков в фазу “белой ниточки”, на глубину 2-3 см.
Следующее боронование проводилось по всходам сои, средней бороной (БЗСС-1,0), агрегатируемой трактором Т-70М, поперек рядков во второй половине дня, когда тургор у растений снизился, и они стали менее ломкими.
Так же за время вегетации провели две культивации и прополки в рядках. Первая культивация в фазу 3-4 настоящих листьев проводилась культиватором КРН-4,2 с боронованием на глубину 4-6 см, вторая - в начале цветения на глубину 5-7 см.
... системы, но вызвал увеличение ее массы, мы провели исследования по влиянию кинетина на накопление массы корневой и побеговой систем в зависимости от уровня минерального питания. Данные расположены в таблицах 3 и 4. Таблица 3 Влияние кинетина на массу побеговой системы 10-ти проростков пшеницы в зависимости от уровня калийного питания ( мг). Возраст, дн. NP NP + КН % NPK NPK + КН % ...
... фазы развития. Кроме того, применение указанных гаметоцидов задерживало прохождение фенологических фаз у растений, а также выколашивание части стеблей. Однако, несмотря на отрицательные побочные действия гаметоцидов, применение их в ближайшей перспективе может открыть путь к реализации эффекта гетерозиса у зерновых (особенно пшеницы), технических, овощных и кормовых культур. Поэтому весьма ...
... . У засухоустойчивых растений эти показатели будут выше. В селекционной работе используют такой показатель, как содержание статолитного крахмала в корневом чехлике. Генетически обусловленным признаком засухоустойчивости растений является способность их вегетативных органов (особенно листьев) накапливать во время засухи пролин. При этом концентрация пролина увеличивается в 10—100 раз. В пролине ...
... к селекционерам, как непременная устойчивость сортов к механическим повреждениям, повергает последних в глубокое уныние (а подобных требований к перерабатываемому сорту десятки) . Вот почему биотехнологи стремятся как-то помочь старым апробированным сортам — улучшить их продуктивность, качество или товарный вид. Привередливые американцы, например, предпочитают апельсины ярко-оранжевой окраски. ...
0 комментариев