1. Литературный обзор

1.1 ОБЩИЕ СВЕДЕНИЯ

Хром — элемент 6-й группы периодической системы элементов Д И- Менделеева. Его атомный номер 24, атомная масса 51,99. До хрома ни один элемент периодической системы не выделяется электролизом из водных растворов.

Физические свойства хрома следующие: температура плавления 1890—1900 °С; температура кипения 2500 °С; плотность (при 20 °С) 6,9— 7,2 г/см3; температурный коэффициент линейного _ расширения (при 20 °С) 6,6* 10"6 К 1; удельная теплоемкость 0,46-103 Дж/(кг-К).

Соединения шестивалентного хрома являются сильными окислителями. Хромовый ангидрид при растворении в воде образует смесь полихромовых кислот. В разбавленном растворе образуется Н2[Сг04], при средней концентрации — Н2 [СгО3(СгО4) ]. При дальнейшем увеличении концентрации образуются Н2 [СгО3(СгО4)]2 и Н2[Сг03(Сг04)3]. Все хромовые кислоты относятся к сильным, по мере усложнения их состава степень их диссоциации в разбавленных растворах возрастает. При 25 °С константы диссоциации хромовой кислоты но первой и второй ступеням составляют соответственно 1,8-10-1 и 3,20- 10-7. Оксид Сг2О3 обладает амфотерными свойствами. Соединения Сг2+, обладающие основными свойствами, неустойчивы.

1.2 СТРУКТУРА И СВОЙСТВА ЭЛЕКТРООСАЖДЕННОГО ХРОМА

Структура. Электролитический хром отличается мелкокристаллической структурой. Наименьшими размерами обладают кристаллы блестящего хрома 0,001—0,01 мкм. Кристаллы матового и молочного хрома имеют размеры кристаллов 0,1—10 мкм. Осадки хрома характеризуются слоистостью и образованием на поверхности характерных наростов — микросфероидов (рис. 10), которые наблюдаются при осаждении достаточно толстых покрытий (более 30—50 мкм).

Известны две основные структурные модификации электроосажденного хрома:

а-хром — объемно-центрированный куб с параметром элементарной ячейки а = 2,878 А (0,2878 нм) и плотностью 7,1 г/см3;

β-хром — гексагональная решетка с параметрами а = 2,717 А (0,2717 нм) и с= 4,419 А (0,4419 нм), плотностью 6,08 г/см5*. Помимо этих двух модификаций обнаружена также модификация γ-Сr с элементарной ячейкой типа а-Мп, содержащей 58 атомов в элементарной ячейке [а = 8,717 (0,8717 нм], а также хром, имеющий кубическую гранецентрированную решетку.

Структура а-Сr является стабильной, характерной для осадков блестящего типа, т. е. осадков, полученных при высокой температуре.

Структура Р~Сr является метастабильной, характерной для осадков, полученных при низкой температуре, т. е. для матовых осадков. Гексагональный хром представляет собой фазу внедрения водорода в хром или гидрид хрома состава от СrН до СrН2. Гексагональный хром самопроизвольно переходит в стабильную кубическую структуру (а-Сr), что вызывает сокращение объема осадка примерно на 15—16%, возникновение внутренних напряжений растяжения и растрескивание осадка.

Содержание газов. Электролитически осажденный хром содержит (масс, доля, %) в среднем 0,04—0,05 Н2 и до 0,2—0,5 О2, а также незначительное количество N2. Примерное содержание Н2 (масс, доля, %) в осадках, полученных при различных температурах: 32-0,07; 52 - 0,06, 65 -0,03. Водород может быть в различной форме: в составе гидрида, в адсорбированном состоянии, в растворенном состоянии. Кислород попадает в осадок при захвате частиц катодной пленки, содержащих Сr2О3 или дру-гие кислородсодержащие соединения, осака. Полагается, что при включение в осадок N2 является основной причиной хруппкости хромовых покрытий.

Включение газов в осадок в значительной мере зависит от температуры электролиза. При повышении температуры в интервале 40—70 °С содержание газов снижается примерно в 2 раза. Увеличение плотности тока приводит к некоторому увеличению содержания газов в хроме.

Термическая обработка после хромирования приводит к удалению водорода из хромового покрытия, причем основная масса водорода выделяется при температуре, близкой к 200 °С.

Внутренние напряжения. В процессе электроосаждения в хромовых покрытиях возникают σвн растяжения. Причина возникновения этих напряжений — структурные превращения, вызывающие сокращение объема осадка при самопроизвольном переходе нестабильной гексагональной структуры в объемно-центрированную кубическую.

В наибольшей степени на величину σвя оказывает влияние температура электролиза: в интервале получения блестящих и молочных осадков внутренние напряжения σвн снижаются. При каждой температуре электролиза минимум 0ВН в осадках обеспечивается при определенной плотности тока, А/дм2: при 50 °С — 30, при 55 °С — 40. Внутренние напряжения незначительно снижаются при увеличении концентрации СО3.

При Т, близкой к 90 °С, возможно получение хромовых покрытий, не имеющих сЕН.

Микротвердость. Твердость покрытий определяется режимом электролиза. При увеличении температуры электролиза твердость снижается, при увеличении плотности тока максимум микротвердости наблюдается при плотности, близкой к 60 А/дм2. При Т= 35-:-45 °С твердость покрытий, осажденных из разбавленного (150 г/л) и из стандартного электролитов (250 г/л), практически не отличается. При температуре 65—75 СС твердость осадков из разбавленного электролита выше на 10—20%. Термическая обработка после хромирования приводит к снижению твердости и к увеличению размера зерен покрытия.

Износостойкость. Наиболее износостойкие покрытия, как правило, наносят при режимах электролиза, обеспечивающих получение покрытий на границе областей осаждения блестящих и молочных покрытий. Однако во многих случаях установлено, что с увеличением твердости износостойкость осадков растет. Термическая обработка, осуществляемая после хромирования, влияет на износостойкость покрытий. Наиболее высокой износостойкостью обладают покрытия, термообработанные в интервале 150-200 °С. Термическая обработка при более высокой вызывает существенное снижение износостойкости. Осадки полученные при Т = 70 С более, практически не изменяют износостойкость, в результате термической обработки.

Пористость. Для хромовых покрытий характерна пористость, возникающая в результате растрескивания покрытий под действием ат. Появление пористости в виде сетки трещин начинается по достижении определенной толщины покрытия.

Пористая структура осадков хрома, полученных при различной температуре хромирования, определяет скорость его разрушения СР в 1 н. НС1 при Т=40°С:

На пористость хрома основное влияние оказывают температура электролиза и соотношение между СгО3 и Н24. В качестве количественного критерия пористости выбрано число площадок, образующихся в результате появления на покрытии сетки трещин, приходящееся на мм2 поверхности.


Информация о работе «Гальваническое покрытие хромом»
Раздел: Химия
Количество знаков с пробелами: 58633
Количество таблиц: 7
Количество изображений: 6

Похожие работы

Скачать
49299
1
4

... технологиям очистки или даже с помощью неудовлетворительной очистки добиться выполнения жёстких требований к очищенной воде [8, c. 151]. 3.Совершенствование технологий эффективности очистки гальванических стоков на Санкт-петербургском заводе гальванических покрытий   3.1 Направления совершенствования Загрязнение тяжелыми металлами активных илов очистных сооружений связано с тем, что на ...

Скачать
50085
0
15

... завода (бывш.) оснащены устройствами автоматического регулирования температуры, фильтрации электролитов, очистки зеркала раствора. Грузоподъемность автооператора — 4,45 Н. Производительность линий при гальванических покрытиях — до 30 м2/ч, при химическом — до 60 м2/ч. Загрузка и разгрузка производятся с одной стороны линии. Автоматические линии с автооператором консольного типа (АГ-24 и АГ-42) ...

Скачать
21342
5
0

... известной с точностью ; 3)   разброс значений толщины покрытия на поверхности эталона не должен превышать  номинального значения. 3.1 Расчёт погрешности установки и определение требований к компонентам установки Толщина гальванического покрытия, определяемая кулонометрическим методом, вычисляется по формуле: ,где K=0,73 - электрохимический эквивалент никеля; V=1 ; H=160 мм- высота ...

Скачать
28232
1
1

... интерес главным образом для группового разделения и качественного испытания на хром, а не для количественного его определения, так как многие другие элементы также образуют нерастворимые соединения с этими реагентами. Точные результаты получаются при определении хрома методом, основанным на восстановлении хромата иодистоводородной кислотой и титровании выделяющегося при этом йода раствором ...

0 комментариев


Наверх