8. Очистка сточных вод

Гальванотехника – одно из производств, серьезно влияющих на загрязнение окружающей среды, в частности ионами тяжелых металлов, наиболее опасных для биосферы. Главным поставщиком токсикантов в гальванике (в то же время и основным потребителем воды и главным источником сточных вод) являются промывные воды. Объем сточных вод очень велик из-за несовершенного способа промывки деталей, который требует большого расхода воды (до 2 м3 и более на 1 м2 поверхности деталей).

На очистных сооружениях наиболее распространенным методом обезвреживания гальваностоков является реагентный метод, в частности, осаждение металлов гидроксидом кальция, не обеспечивающий доведение содержания ионов тяжелых металлов в стоках до современных ПДК. Основным недостатком этого метода является большое количество шламов, содержащих токсичные соединения тяжелых металлов. Утилизация и переработка образующихся шламов – очень сложное и дорогостоящее производство, а в некоторых случаях шламы не поддаются переработке. В таких случаях возврат химреактивов и металлов в цикл производства практически исключен. Основным методом обезвреживания таких отходов является захоронение их на специальных площадках, если таковые предусматриваются. Однако чаще всего эти шламы либо складируются на территории предприятия, либо неконтролируемо сбрасываются в овраги, водоемы, леса, а в лучшем случае на городские свалки. Лишь часть гальваношламов находит применение в строительстве при производстве строительных материалов.


8.1 АНАЛИТИЧЕСКИЙ ОБЗОР МЕТОДОВ ОЧИСТКИ ХРОМСОДЕРЖАЩИХ СТОЧНЫХ ВОД ГАЛЬВАНОПРОИЗВОДСТВА

Известно большое количество методов извлечения цветных металлов из сточных вод гальванопроизводства. Наиболее используемые методы подразделяются на:

-реагентные,

-биохимические,

-электрохимические,

-мембранные,

-сорбционные,

-комбинированные.

РЕАГЕНТНЫЙ МЕТОД

Наиболее распространенный метод, заключающийся в переводе растворимых веществ в нерастворимые при добавлении различных реагентов с последующим отделением их в виде осадков.

В качестве реагентов используют гидроксиды кальция и

натрия, сульфиды натрия, феррохромовый шлак, сульфат железа(II), пирит [2, 6 - 9]. Наиболее широко для осаждения металлов используется гидроксид кальция, который осаждает ионы металла в виде гидроксидов:

Me n+ + nOH - = Me(OH)n

Наиболее эффективным для извлечения цветных металлов является сульфид натрия, т.к. растворимость сульфидов тяжелых металлов значительно ниже растворимости других труднорастворимых соединений - гидроксидов и карбонатов. Процесс извлечения металлов сульфидом натрия выглядит так:

Me 2+ +S 2- =MeS ;

Me 3+ +S 2- =Me2S3 .

Сульфиды тяжелых металлов образуют устойчивые коллоидные системы, и поэтому для ускорения процесса их осаждения вводят коагулянты и флокулянты.Так как коллоидные частицы сульфидов имеют отрицательный заряд, то в качестве коагулянтов используют электролиты с многозарядными катионами - обычно сульфаты алюминия или трехвалентного железа, также их смеси. Соли железа имеют ряд преимуществ перед солями алюминия:

а) лучшее действие при низких температурах;

б) более широкая область оптимальных значений рН среды;

в) большая прочность и гидравлическая крупность хлопьев;

г) возможность использовать для вод с более широким диапазоном солевого состава.

При использовании смесей Al2(SO4)3 и FeCI3 в соотношениях от 1:1 до 1:2 достигается лучший результат коагулирования, чем при раздельном применении реагентов. Кроме вышеназванных коагулянтов, могут быть использованы различные глины, алюминийсодержащие отходы производства, травильные растворы, пасты, смеси и шлаки, содержащие диоксид кремния. Для ускорения процесса коагуляции используют флокулянты, в основном полиакриламид. Добавка его в количестве 0.01% от массы сухого вещества увеличивает скорость выпадения осадков гидроксидов металлов в 2 - 3 раза [6]. Метод реализован на большинстве предприятий в виде станций нейтрализации. Достоинства метода:

1) Широкий интервал начальных концентраций ИТМ.

2) Универсальность.

3) Простота эксплуатации.

4) Отсутствует необходимость в разделении промывных вод и концентратов.

Недостатки метода

1) Не обеспечивается ПДК для рыбохозяйственных водоемов.

2) Громоздкость оборудования.

3) Значительный расход реагентов.

4) Дополнительное загрязнение сточных вод.

5) Невозможность возврата в оборотный цикл очищенной воды из-за повышенного солесодержания.

6) Затрудненность извлечения из шлама тяжелых металлов для утилизации.

7) Потребность в значительных площадях для шламоотвалов.

Процесс осаждения металлов включает следующие стадии:

1) добавление фосфорной кислоты или ее кислой соли к водному раствору из расчета моль фосфата на моль тяжелого металла;

2) понижение рН до 3 добавлением серной кислоты;

3) добавление коагулянта FeCl3 в концентрации 0.75-1.5 г/л;

4) увеличение рН раствора до 8.5 добавлением гидроксида кальция и получение осадка, включающего скоагулированные фосфаты металлов;

5) обезвоживание осадка.

БИОХИМИЧЕСКИЙ МЕТОД

В последнее время у нас в стране и за рубежом увеличились масштабы проводимых исследований по разработке технологии выделения тяжелых цветных металлов из сточных вод гальванопроизводств биохимическим методом сульфатовосстанавливающими бактериями (СВБ). Однако достигнутое при этом снижение концентраций ионов тяжелых металлов, в частности таких, как хром, составило только 100 мг/л, что нельзя признать оптимальным, исходя из реальных концентраций ионов шестивалентного хрома (200 - 300 мг/л). В мировой практике было исследовано влияние высоких концентраций ионов тяжелых металлов на эффективность их извлечения биохимическим методом. Так, скорость изменения концентрации шестивалентного хрома определяли в стеклянных реакторах, строго выдерживая анаэробные условия протекания процесса. Для развития сульфатвосстанавливающих бактерий в реакторы вводили питательную среду Постгейта. Кроме того, отдельные серии опытов проводили на пилотной установке непрерывного действия, состоящей из биотенка проточного типа и отстойника. В Уфимском нефтяном институте разработан комплексный метод биохимического извлечения хрома. Сущность его заключается в использовании специализированных бактериальных культур, отличающихся высокой стойкостью к отравляющему действию хрома. Хромсодержащие сточные воды подают в соответствующие емкости-накопители, затем - в биотенк, где смешиваются с бактериальными культурами. Из биотенка очищенные воды отводятся в отстойник, после чего направляются в фильтры для доочистки. Очищенная вода поступает на повторное использование. Хромсодержащие осадки, образующиеся в биотенках, отстойниках и фильтрах, подаются в шламонакопитель, обезвоживаются на вакуум-фильтрах и используются в качестве добавок при производстве строительных материалов. Достоинствами этого метода являются высокая эффективность и простота технологического оформления процесса.

ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ

В настоящее время электрохимические методы выделения тяжелых цветных металлов из сточных вод гальванопроизводства находят все более широкое применение. К ним относятся процессы анодного окисления и катодного восстановления, электрокоагуляции, электрофлокуляции и электродиализа. Все эти процессы протекают на электродах при пропускании через раствор постоянного электрического тока.

Проведенные исследования по очистке сточных вод гальванического производства в условиях электрохимической неравновесности установили, что восстановительные процессы в сточых водах протекают при взаимодействии сольватированных электронов с гидратированными и связанными в комплексные соединения ионами металлов. Показано, что содержание Zn,Cu,Cd,Mo,Co в сточных водах после обработки в условиях электрохимической неравномерности не превышает, а в ряде случаев значительно ниже ПДК.

7.1.3.1. Метод электрокоагуляции

7.1.3.2. Метод электрофлотации

7.1.3.3 Метод электролиза

7.1.3.4. Метод гальванокоагуляции

МЕМБРАННЫЕ МЕТОДЫ

Методы мембранного разделения, используемые в технологии выделения цветных металлов из сточных вод гальванопроизводства, условно делятся на микрофильтрацию, ультрафильтрацию, обратный осмос, испарение через мембраны, диализ, электродиализ. Наибольшие успехи в отношении эффективности и технологичности выделения цветных металлов достигнуты при использовании обратного осмоса, ультрафильтрации и электродиализа.

Достоинства метода

7.1.4.1. Метод обратного осмоса

1) Возможность очистки до требований ПДК.

2) Возврат очищенной воды до 60% в оборотный цикл.

3) Возможность утилизации ценных компонентов.

4) Отсутствие фазовых переходов при отделении примесей,

что позволяет вести процесс при небольшом расходе энергии.

5) Возможность проведения при комнатных температурах без

применения или с небольшими добавками химических реагентов.

6) Простота конструкций аппаратуры.

Недостатки метода

1) Необходимость предварительной очистки стоков от масел, ПАВ, органики, растворителей, солей жесткости, взвешенных веществ.

2) Значительный расход электроэнергии.

3) Дефицитность и дороговизна мембран.

4) Сложность эксплуатации.

5) Отсутствие селективности.

6) Чувствительность к изменению параметров очищаемых вод

СОРБЦИОННЫЕ МЕТОДЫ

Сорбционные методы являются наиболее распространенными для выделения хрома из сточных вод гальванопроизводства. Их можно условно поделить на три разновидности:

1) сорбция на активированном угле (адсорбционный обмен);

2) сорбция на ионитах (ионный обмен);

3) комбинированный метод..

КОМБИНИРОВАННЫЕ МЕТОДЫ

Наиболее распространенным из всех разновидностей сорбционного метода является комбинированный метод, который заключается в использовании и угля, и ионитов одновременно для извлечения хрома. Суть его такова: сточные воды подаются на гравийно-угольный фильтр, затем последовательно на сильнокислый катионит, слабоосновной анионит и далее - сильноосновной анионообменник. После прохождения всего комплекса выделения хрома через ионообменные колонны, вода имеет высокую степень чистоты и может использоваться повторно. Извлеченный хром может быть направлен на утилизацию в кожевенную промышленность для дубления кож.

Для выделения тяжелых металлов, в том числе и хрома, из сточных вод гальванопроизводства учеными было предложено использовать хелатообразующий реагент с дитиоаминогруппами. Последний получают путем смешения одинаковых количеств органических диаминосоединений и CS2 при пониженной температуре в течение нескольких часов с последующей нейтрализацией щелочным раствором и удалением непрореагировавшего CS2. Образующийся после интенсивного перемешивания в течении 20 - 120 минут осадок хелата хрома удаляют седиментацией или фильтрацией.


Литература

1.         Гальванические покрытия в машиностроении. Том 1 под редакцией д-ра техн. наук проф. М.А. Шлугера и канд. техн. наук Л.Д.Тока

2.      Гальванические покрытия в машиностроении. Том 2 под редакцией д-ра техн. наук проф. М.А. Шлугера и канд. техн. наук Л.Д.Тока.

3.      М.А.Дасоян Техника электрохимических покрытий. Машиностроение, 1989.

4.      Б.Н.Байрачный Справочник гальваника – Харьков Прапор, 1988.

5.      А.М.Ямпольский, В.А.Ильин. Краткий справочник гальваника 3-е изд. Машиностроение 1981.


Информация о работе «Гальваническое покрытие хромом»
Раздел: Химия
Количество знаков с пробелами: 58633
Количество таблиц: 7
Количество изображений: 6

Похожие работы

Скачать
49299
1
4

... технологиям очистки или даже с помощью неудовлетворительной очистки добиться выполнения жёстких требований к очищенной воде [8, c. 151]. 3.Совершенствование технологий эффективности очистки гальванических стоков на Санкт-петербургском заводе гальванических покрытий   3.1 Направления совершенствования Загрязнение тяжелыми металлами активных илов очистных сооружений связано с тем, что на ...

Скачать
50085
0
15

... завода (бывш.) оснащены устройствами автоматического регулирования температуры, фильтрации электролитов, очистки зеркала раствора. Грузоподъемность автооператора — 4,45 Н. Производительность линий при гальванических покрытиях — до 30 м2/ч, при химическом — до 60 м2/ч. Загрузка и разгрузка производятся с одной стороны линии. Автоматические линии с автооператором консольного типа (АГ-24 и АГ-42) ...

Скачать
21342
5
0

... известной с точностью ; 3)   разброс значений толщины покрытия на поверхности эталона не должен превышать  номинального значения. 3.1 Расчёт погрешности установки и определение требований к компонентам установки Толщина гальванического покрытия, определяемая кулонометрическим методом, вычисляется по формуле: ,где K=0,73 - электрохимический эквивалент никеля; V=1 ; H=160 мм- высота ...

Скачать
28232
1
1

... интерес главным образом для группового разделения и качественного испытания на хром, а не для количественного его определения, так как многие другие элементы также образуют нерастворимые соединения с этими реагентами. Точные результаты получаются при определении хрома методом, основанным на восстановлении хромата иодистоводородной кислотой и титровании выделяющегося при этом йода раствором ...

0 комментариев


Наверх