5 ПРИМЕНЕНИЕ

Следует признать, что масштабные проникновения фундаментальных математических идей в индустрию и технологию — явления довольно редкие. Так что при изложении этого предмета лучше заранее настроиться на здоровый пессимизм. Вместе с тем ясно, что не следует делать категорических выводов о прекращении фундаментальных исследований в каком-то направлении на том основании, что первооткрыватель не смог в течение года (или десяти) найти ему общепонятное применение. Применение может быть найдено совсем другими людьми и совсем в другое время.

Чтобы убедиться в справедливости сказанного, вспомним, например, историю открытия электромагнитных волн. Их существование было предсказано М. Фарадеем в 1832 году. Дж. Максвелл в 1865 году теоретически показал, что электромагнитные колебания не остаются локализованными в пространстве, а распространяются в вакууме со скоростью света во все стороны от источника. В 1888 году максвелловская теория получила подтверждение в опытах Г. Герца. 7 мая 1895 года А.С. Попов на заседании физического отделения Русского физико-химического общества сделал научный доклад об изобретенной им системе связи без проводов и продемонстрировал ее работу. В начале 1900 года приборы А.С. Попова были применены для связи во время работ по ликвидации аварий броненосца "Генерал-адмирал Апраксин" у острова Гогланд и при спасении рыбаков, унесенных на льдине в море. При этом дальность связи достигла 45км. История открытия и использования радиоволн продолжается и сейчас, вбирая в себя достижения сотен тысяч инженеров и исследователей (вспомните, хотя бы навязчивое "все живое тянется к био"). Мог ли все это предвидеть Фарадей в 1842 или 1852 году?

Теперь мы можем сознаться, что сегодня неизвестно по-настоящему нетривиальных применений замкнутых изгибаемых многогранных поверхностей. Почти тривиальным является наблюдение, что конструкция панельного дома имеет много общего с многогранной поверхностью. Причем на практике желательно сделать эту конструкцию как можно менее изгибаемой. Однако архитекторы и инженеры-строители решали и решают эту задачу своими методами без обращения к новейшим изысканиям геометров.

Попытка менее очевидного приложения возникла в стереохимии — науке о пространственном строении молекул. Речь пойдет о циклических молекулах, состоящих из шести атомов. Типичными примерами могут служить молекулы бензола или циклогексана. Бензольное кольцо, в котором, как известно, чередуются атомы водорода и углерода, обычно изображают так, как показано на рис. 15. Экспериментально установлено, что в молекулах бензола не только расстояния между атомами, но и углы между связями, выходящими из одного атома, всегда имеют одно и то же численное значение. Поэтому в качестве модели бензольного кольца можно принять пространственный шестиугольник, дополненный его короткими диагоналями (то есть диагоналями, соединяющими вершины, идущие через одну). Схематически эта модель изображена на рис. 14 в виде плоской фигуры, где буквами α, β и γ обозначены длины соответствующих отрезков. В этой модели следует считать все участвующие в ней отрезки идеально жесткими стержнями, шарнирно соединенными между собой в вершинах шестиугольника. Наша модель имеет 6 вершин, 12 отрезков-стержней и 8 треугольников, ограниченных отрезками-стержнями — ровно столько же, сколько вершин, ребер и граней имеет октаэдр. Заменив мысленно каждый из восьми треугольников, ограниченных отрезками-стержнями, плоским треугольником, получим, что наша модель бензольного кольца превратилась в октаэдр, грани которого имеют заранее предписанные размеры, а двугранные углы произвольны. (Схематически такой октаэдр изображен на рис. 14.) Поскольку грани достроены лишь мысленно, то ясно, что невыпуклость октаэдра или наличие самопересечений не влияют на наши рассуждения.

Теперь мы подошли к самой сути: существует ли циклическая молекула, состоящая из шести атомов, такая, что соответствующий ей октаэдр является изгибаемым? Если бы такая молекула существовала, то она тоже должна была бы допускать непрерывные изменения своей пространственной формы. Естественно ожидать, что при таком изменении формы молекулы менялись бы физические и химические свойства вещества, например объем или коэффициент преломления. Это было бы уже что-то новое в гидравлике или оптике. Вот бы научиться управлять такими изменениями... Но здесь мы вынуждены прервать полет фантазии и сообщить, что подобного рода молекулы, непрерывно (то есть без скачков) изменяющие свою форму в пространстве, пока не обнаружены.

Заканчивая обсуждение приложений, укажем, что задачи о необычной (то есть интуитивно неочевидной) подвижности многогранных поверхностей или стержневых систем периодически возникают в разных разделах науки и техники. Достаточно напомнить, что шарнирные механизмы изучались П.Л.Чебышевым более 100 лет назад, а перспективным источником новых вопросов представляется теория фуллеренов — недавно открытой третьей стабильной формы углерода.


Информация о работе «Изгибаемые многогранники. Октаэдр Брикара. Флексор Штеффена»
Раздел: Математика
Количество знаков с пробелами: 47363
Количество таблиц: 0
Количество изображений: 22

0 комментариев


Наверх