Содержание
Введение
Глава 1.Построение классического полукольца частных
Глава 2.Построение полного полукольца частных
Глава 3.Связь между полным и классическим полукольцами частных
Библиографический список
В настоящее время теория полуколец активно развивается и находит своё применение в теории автоматов, компьютерной алгебре и других разделах математики.
В работе построены полное и классическое полукольца частных, а так же рассмотрена их связь.
Прежде чем начать рассмотрение этих структур, определим коммутативное полукольцо частных следующим образом.
Непустое множество
с определёнными на нём бинарными операциями
и
называется коммутативным полукольцом, если выполняется следующие аксиомы:
A1.
- коммутативная полугруппа с нейтральным элементом
, т.е.
1)
;
2)
![]()
3)
![]()
А2.
- коммутативная полугруппа с нейтральным элементом 1, т.е.
1)
;
2)
![]()
3)
![]()
А3. умножение дистрибутивно относительно сложения:
,
.
А4.
.
Таким образом, можно сказать, что полукольцо отличается от кольца тем, что аддитивная операция в нём необратима.
Для построения классического полукольца частных можно воспользоваться следующим методом:
Рассмотрим пары неотрицательных целых чисел
.
Будем считать пары
и
эквивалентными, если
, получим разбиение множества пар на классы эквивалентности.
Затем введём операции на классах, превращающие множество классов эквивалентных пар в полуполе, которое содержит полукольцо неотрицательных чисел.
Определение1. Элемент
назовём мультипликативно сокращаемым, если для
из равенства
следует, что
.
Обозначим через
множество всех мультипликативно сокращаемых элементов.
Утверждение1.Мультипликативно сокращаемый элемент является неделителем нуля.
Пусть
- делитель нуля, т.е.
для некоторого
. Тогда
, но
не является мультипликативно сокращаемым. ▲
Пусть
- коммутативное полукольцо с возможностью сокращения на элементы из
. Рассмотрим множество упорядоченных пар
. Введём отношение ~ на
:
для всех
и
.
Предложение1. Отношение ~ является отношением эквивалентности на
.
Покажем, что ~ является отношением рефлективности, симметричности и транзитивности.
1.Рефлективность: в силу коммутативности полукольца
;
2. Симметричность:
;
3.Транзитивность:
Таким образом, отношение ~ является отношением эквивалентности на
.
Полукольцо
разбивается на классы эквивалентности; в каждом классе находятся те элементы, которые находятся в отношении ~. Обозначим
класс эквивалентности пары
. Введём операции на множестве
всех классов эквивалентности:
т.к. для
,
,
выполнено
отсюда т.к.
получаем
и поскольку
то
следовательно
.
Покажем корректность введённых операций:
Пусть
,
, тогда

▲
Теорема1.
- коммутативное полукольцо с 1.
.
Доказательство.
Чтобы доказать, что множество
всех классов эквивалентности является коммутативным полукольцом с 1, нужно показать замкнутость на нём операций:
сложение: для
и ![]()
1. ![]()
2.![]()
![]()
Так как правые части равны, то левые части тоже равны:
![]()
3. покажем, что для
.
Так как ![]()
Класс
является нейтральным по +:
Из равенства
тогда
.
Для
составляет отдельный класс, играющий в
роль нуля.
умножение: для
и ![]()
1. ![]()
2. ![]()
![]()
Из равенства правых частей следует, что ![]()
3. покажем, что для
.
Пусть ![]()
Класс
является нейтральным по умножению (единицей полукольца), т.к.
, поскольку из равенства
тогда
.
4. умножение дистрибутивно относительно сложения:
![]()
![]()
Следовательно, правосторонний дистрибутивный закон выполняется:
![]()
Аналогично доказывается левосторонний закон дистрибутивности.
Таким образом, доказано, что
является коммутативным полукольцом с 1.
Полукольцо
называется классическим полукольцом частных полукольца
.▲
Для построения полного полукольца частных можно воспользоваться следующим методом. Рассмотрим дробь
как частичный эндоморфизм аддитивной полугруппы
неотрицательных целых чисел. Его область определения – идеал
, и он переводит
в
, где
. Аналогично, дробь
определена на идеале
и переводит
в
. Эти две дроби эквивалентны, т.е. они согласованы на пересечении своих областей определений, равном идеалу
, поскольку та и другая дробь переводят
в
. Отношения определяются как классы эквивалентных дробей. Варьируя этот метод, можно выбрать в каждом классе эквивалентности одну «несократимую» дробь. Рассмотренный выше класс содержит несократимую дробь
.
Данный метод можно применить к произвольному коммутативному полукольцу для построения «полного полукольца частных», где в качестве областей определения допускаются лишь идеалы определённого типа – плотные идеалы.
Определение2.Идеал
коммутативного полукольца
называется плотным, если для
и
выполняется равенство
тогда и только тогда, когда
.
Свойства плотных идеалов полукольца
:
10
- плотный идеал.
Доказательство:
Пусть для
выполнено
. Положим
, тогда
. Таким образом
- плотный идеал по определению. ▲
20 Если
- плотный идеал и
, то идеал
плотный.
Доказательство:
Если
- плотный идеал, то для
из равенства
следует
. Пусть для
выполнено
. Так как по условию
возьмём
. Тогда т.к.
- плотный идеал получаем
отсюда
. Таким образом
- плотный идеал по определению. ▲
30 Если
и
- плотные идеалы, то
и
- так же плотные идеалы.
Доказательство:
Положим для
выполняется
. Пусть
, где
,
. Элемент
т.к.
, тогда верно равенство
отсюда
, т.к.
- плотный идеал имеем
,
, и
- плотный,
. Таким образом
- плотный идеал.
Пусть
,
тогда по определению идеала:
. С другой стороны
значит
. Тогда по 20
- плотный идеал. ▲
40 Если
, то 0 не является плотным идеалом.
Доказательство.
Пусть
. Для
и
выполнено
отсюда 0 не является плотным идеалом. ▲
Определение3. Дробью назовём элемент
, где
- некоторый плотный идеал. (
- сокращение от
- гомоморфизм, в данном случае:
- гомоморфизм
)
Таким образом,
- гомоморфизм аддитивных полугрупп, для которого
для
и
.
Введём так же дроби
, положив
и
для
.
Сложение и умножение дробей определяются следующим образом:
пусть
и
тогда
, ![]()
,
.
Покажем, что
является идеалом, где
т.е. сохраняются операции:
1. Если
, то
.
Пусть
,
, тогда
.
2. Если
и
, то
. По условию
.
Так как
- коммутативное полукольцо, то
.
. Таким образом,
- идеал.
Покажем, что идеал
является плотным: надо доказать, что плотный идеал -
, т.е.
.
По определению сложения и умножения
, т.е.
содержит плотный идеал
значит, по свойству 20 идеал
является плотным.
Дроби образуют аддитивную коммутативную полугруппу
с нулём и полугруппу
с единицей. То есть образуют полукольцо.
Доказательство:
1. По определению сложения и умножения:
,
.
, ![]()
2. Коммутативность:
![]()
3. Ассоциативность:
4. Нейтральный элемент.
![]()
![]()
5. Дистрибутивность:
![]()
Правосторонняя дистрибутивность аналогично.
Таким образом, дроби образуют полукольцо.
Определение4. Будем писать
если
и
согласованы на пересечении своих областей определений, т.е.
для
.
Лемма 1.
тогда и только тогда, когда
и
согласованы на некотором плотном идеале.
Доказательство.
Если
то
и
согласованы на
. По свойству 30 идеал
является плотным. Следовательно,
и
согласованы на плотном идеале.
Обратно, пусть
и
согласованы на плотном идеале
. Тогда если
и
, то
отсюда в силу плотности идеала
,
для
, но это равенство выполняется тогда, когда пересечением областей определений
и
является
отсюда следует, что
.▲
Лемма 2. Отношение
является конгруэнцией на системе
.
Доказательство.
Для того чтобы доказать, что
- конгруэнция, нужно показать:
1. отношение
- рефлексивно, симметрично, транзитивно.
Рефлективность:
и
согласованы на плотном идеале
.
Симметричность: пусть
, т.е.
и
согласованы на
.
Транзитивность: пусть
и
, т.е.
и
согласованы на плотном идеале ![]()
и
согласованы на плотном идеале
. Значит
и
согласованы на идеале
, являющемся плотным , и
согласована с
на
, тогда
согласована с
на плотном идеале
по Лемме 1 ![]()
Таким образом,
- отношение эквивалентности.
2. отношение
сохраняет полукольцевые операции.
Ø Пусть
и
, т.е.
для
и
для
.
Тогда ![]()
![]()
и
определены и согласованы на плотном идеале
отсюда по Лемме 1
.
Ø Пусть
и
, т.е.
для
и
для
.
Тогда ![]()
![]()
и
определены и согласованы на плотном идеале
отсюда по Лемме 1
.▲
Теорема2.Если
- коммутативное полукольцо то система
так же является коммутативным полукольцом.
. (Будем называть
полным полукольцом частных полукольца
)
Доказательство.
- разбивает множество дробей
на
непересекающихся классов эквивалентности.
По Лемме 2 все тождества выполняющиеся в
справедливы и в
.
Чтобы убедится, что
коммутативное полукольцо остаётся проверить справедливость законов дистрибутивности и коммутативности.
... ; 3. Идеал на полукольце : ; 4. Главный идеал ограниченной дистрибутивной решетки L, порожденный элементом a: . Глава II «Положительные и ограниченные полукольца». 2.1. Определение, примеры и основные свойства. Полукольцо S с 1 называется положительным, если для любого элемента а S элемент а+1 обратим в S, т.е.. Примерами положительных полуколец служат следующие алгебраические системы: ...
... S с 1 изоморфно прямому произведению кольца и антикольца тогда и только тогда, когда его идеал R(S) имеет единичный элемент, коммутирующий с каждым элементом из S [1]. 3. Полукольцо S служит 0-расширением кольца с помощью полутела тогда и только тогда, когда идеал R(S) полульца S простой (т.е. abÎR(S) влечет aÎR(S) или bÎR(S)). 4. Для полукольца S с 1 фактор-полукольцо S/R(S) ...
... передает здесь идею целой структуры, а не какого-то ее элемента, взаимодействующего с другими"60. Само наличие антропоморфных изваяний безусловно наносит сильный удар концепции исключительно зооморфного характера мировоззрения скифов на ранних этапах их истории. А, как пишет Раевский, "практическая одновременность появлений рассмотренных изображений и древнейших памятников звериного стиля ...
... Расстановку оборудования по цехам и производствам осуществляют методом плоскостного моделирования на планах производственных цехов в масштабе 1:100. 3. ТЕХНОЛОГИЧЕСКИЕ РАСЧЕТЫ КОЛБАСНОГО ЦЕХА. 3.1. Расчет сырья и материалов. Расчеты сырья колбасных мини-цехов и цехов мясокомбинатов различны и могут быть условно разделены на следующие группы: расчет цеха убоя скота и разделки туш; расчет ...
0 комментариев