Содержание
Введение
Глава 1.Построение классического полукольца частных
Глава 2.Построение полного полукольца частных
Глава 3.Связь между полным и классическим полукольцами частных
Библиографический список
В настоящее время теория полуколец активно развивается и находит своё применение в теории автоматов, компьютерной алгебре и других разделах математики.
В работе построены полное и классическое полукольца частных, а так же рассмотрена их связь.
Прежде чем начать рассмотрение этих структур, определим коммутативное полукольцо частных следующим образом.
Непустое множество с определёнными на нём бинарными операциями и называется коммутативным полукольцом, если выполняется следующие аксиомы:
A1. - коммутативная полугруппа с нейтральным элементом , т.е.
1) ;
2)
3)
А2. - коммутативная полугруппа с нейтральным элементом 1, т.е.
1) ;
2)
3)
А3. умножение дистрибутивно относительно сложения:
, .
А4. .
Таким образом, можно сказать, что полукольцо отличается от кольца тем, что аддитивная операция в нём необратима.
Для построения классического полукольца частных можно воспользоваться следующим методом:
Рассмотрим пары неотрицательных целых чисел .
Будем считать пары и эквивалентными, если , получим разбиение множества пар на классы эквивалентности.
Затем введём операции на классах, превращающие множество классов эквивалентных пар в полуполе, которое содержит полукольцо неотрицательных чисел.
Определение1. Элемент назовём мультипликативно сокращаемым, если для из равенства следует, что .
Обозначим через множество всех мультипликативно сокращаемых элементов.
Утверждение1.Мультипликативно сокращаемый элемент является неделителем нуля.
Пусть - делитель нуля, т.е. для некоторого . Тогда , но не является мультипликативно сокращаемым. ▲
Пусть - коммутативное полукольцо с возможностью сокращения на элементы из . Рассмотрим множество упорядоченных пар . Введём отношение ~ на : для всех и .
Предложение1. Отношение ~ является отношением эквивалентности на .
Покажем, что ~ является отношением рефлективности, симметричности и транзитивности.
1.Рефлективность: в силу коммутативности полукольца ;
2. Симметричность: ;
3.Транзитивность: Таким образом, отношение ~ является отношением эквивалентности на .
Полукольцо разбивается на классы эквивалентности; в каждом классе находятся те элементы, которые находятся в отношении ~. Обозначим класс эквивалентности пары . Введём операции на множестве всех классов эквивалентности:
т.к. для , , выполнено отсюда т.к. получаем и поскольку то следовательно .
Покажем корректность введённых операций:
Пусть , , тогда
▲
Теорема1. - коммутативное полукольцо с 1. .
Доказательство.
Чтобы доказать, что множество всех классов эквивалентности является коммутативным полукольцом с 1, нужно показать замкнутость на нём операций:
сложение: для и
1.
2.
Так как правые части равны, то левые части тоже равны:
3. покажем, что для .
Так как
Класс является нейтральным по +:
Из равенства тогда .
Для составляет отдельный класс, играющий в роль нуля.
умножение: для и
1.
2.
Из равенства правых частей следует, что
3. покажем, что для .
Пусть
Класс является нейтральным по умножению (единицей полукольца), т.к. , поскольку из равенства тогда .
4. умножение дистрибутивно относительно сложения:
Следовательно, правосторонний дистрибутивный закон выполняется:
Аналогично доказывается левосторонний закон дистрибутивности.
Таким образом, доказано, что является коммутативным полукольцом с 1.
Полукольцо называется классическим полукольцом частных полукольца .▲
Для построения полного полукольца частных можно воспользоваться следующим методом. Рассмотрим дробь как частичный эндоморфизм аддитивной полугруппы неотрицательных целых чисел. Его область определения – идеал , и он переводит в , где . Аналогично, дробь определена на идеале и переводит в . Эти две дроби эквивалентны, т.е. они согласованы на пересечении своих областей определений, равном идеалу , поскольку та и другая дробь переводят в . Отношения определяются как классы эквивалентных дробей. Варьируя этот метод, можно выбрать в каждом классе эквивалентности одну «несократимую» дробь. Рассмотренный выше класс содержит несократимую дробь .
Данный метод можно применить к произвольному коммутативному полукольцу для построения «полного полукольца частных», где в качестве областей определения допускаются лишь идеалы определённого типа – плотные идеалы.
Определение2.Идеал коммутативного полукольца называется плотным, если для и выполняется равенство тогда и только тогда, когда .
Свойства плотных идеалов полукольца :
10 - плотный идеал.
Доказательство:
Пусть для выполнено . Положим , тогда . Таким образом - плотный идеал по определению. ▲
20 Если - плотный идеал и , то идеал плотный.
Доказательство:
Если - плотный идеал, то для из равенства следует . Пусть для выполнено . Так как по условию возьмём . Тогда т.к. - плотный идеал получаем отсюда . Таким образом - плотный идеал по определению. ▲
30 Если и - плотные идеалы, то и - так же плотные идеалы.
Доказательство:
Положим для выполняется . Пусть , где , . Элемент т.к. , тогда верно равенство отсюда , т.к. - плотный идеал имеем , , и - плотный, . Таким образом - плотный идеал.
Пусть , тогда по определению идеала: . С другой стороны значит . Тогда по 20 - плотный идеал. ▲
40 Если , то 0 не является плотным идеалом.
Доказательство.
Пусть . Для и выполнено отсюда 0 не является плотным идеалом. ▲
Определение3. Дробью назовём элемент , где - некоторый плотный идеал. ( - сокращение от - гомоморфизм, в данном случае: - гомоморфизм )
Таким образом, - гомоморфизм аддитивных полугрупп, для которого для и .
Введём так же дроби , положив и для .
Сложение и умножение дробей определяются следующим образом:
пусть и тогда
,
, .
Покажем, что является идеалом, где т.е. сохраняются операции:
1. Если , то .
Пусть , , тогда .
2. Если и , то . По условию .
Так как - коммутативное полукольцо, то .
. Таким образом, - идеал.
Покажем, что идеал является плотным: надо доказать, что плотный идеал - , т.е. .
По определению сложения и умножения , т.е. содержит плотный идеал значит, по свойству 20 идеал является плотным.
Дроби образуют аддитивную коммутативную полугруппу с нулём и полугруппу с единицей. То есть образуют полукольцо.
Доказательство:
1. По определению сложения и умножения:
, .
,
2. Коммутативность:
3. Ассоциативность:
4. Нейтральный элемент.
5. Дистрибутивность:
Правосторонняя дистрибутивность аналогично.
Таким образом, дроби образуют полукольцо.
Определение4. Будем писать если и согласованы на пересечении своих областей определений, т.е. для .
Лемма 1. тогда и только тогда, когда и согласованы на некотором плотном идеале.
Доказательство.
Если то и согласованы на . По свойству 30 идеал является плотным. Следовательно, и согласованы на плотном идеале.
Обратно, пусть и согласованы на плотном идеале . Тогда если и , то отсюда в силу плотности идеала , для , но это равенство выполняется тогда, когда пересечением областей определений и является отсюда следует, что .▲
Лемма 2. Отношение является конгруэнцией на системе .
Доказательство.
Для того чтобы доказать, что - конгруэнция, нужно показать:
1. отношение - рефлексивно, симметрично, транзитивно.
Рефлективность: и согласованы на плотном идеале .
Симметричность: пусть , т.е. и согласованы на .
Транзитивность: пусть и , т.е. и согласованы на плотном идеале
и согласованы на плотном идеале . Значит и согласованы на идеале , являющемся плотным , и согласована с на , тогда согласована с на плотном идеале по Лемме 1
Таким образом, - отношение эквивалентности.
2. отношение сохраняет полукольцевые операции.
Ø Пусть и , т.е. для и для .
Тогда и определены и согласованы на плотном идеале отсюда по Лемме 1 .
Ø Пусть и , т.е. для и для .
Тогда и определены и согласованы на плотном идеале отсюда по Лемме 1 .▲
Теорема2.Если - коммутативное полукольцо то система так же является коммутативным полукольцом. . (Будем называть полным полукольцом частных полукольца )
Доказательство.
- разбивает множество дробей на непересекающихся классов эквивалентности.
По Лемме 2 все тождества выполняющиеся в справедливы и в .
Чтобы убедится, что коммутативное полукольцо остаётся проверить справедливость законов дистрибутивности и коммутативности.
... ; 3. Идеал на полукольце : ; 4. Главный идеал ограниченной дистрибутивной решетки L, порожденный элементом a: . Глава II «Положительные и ограниченные полукольца». 2.1. Определение, примеры и основные свойства. Полукольцо S с 1 называется положительным, если для любого элемента а S элемент а+1 обратим в S, т.е.. Примерами положительных полуколец служат следующие алгебраические системы: ...
... S с 1 изоморфно прямому произведению кольца и антикольца тогда и только тогда, когда его идеал R(S) имеет единичный элемент, коммутирующий с каждым элементом из S [1]. 3. Полукольцо S служит 0-расширением кольца с помощью полутела тогда и только тогда, когда идеал R(S) полульца S простой (т.е. abÎR(S) влечет aÎR(S) или bÎR(S)). 4. Для полукольца S с 1 фактор-полукольцо S/R(S) ...
... передает здесь идею целой структуры, а не какого-то ее элемента, взаимодействующего с другими"60. Само наличие антропоморфных изваяний безусловно наносит сильный удар концепции исключительно зооморфного характера мировоззрения скифов на ранних этапах их истории. А, как пишет Раевский, "практическая одновременность появлений рассмотренных изображений и древнейших памятников звериного стиля ...
... Расстановку оборудования по цехам и производствам осуществляют методом плоскостного моделирования на планах производственных цехов в масштабе 1:100. 3. ТЕХНОЛОГИЧЕСКИЕ РАСЧЕТЫ КОЛБАСНОГО ЦЕХА. 3.1. Расчет сырья и материалов. Расчеты сырья колбасных мини-цехов и цехов мясокомбинатов различны и могут быть условно разделены на следующие группы: расчет цеха убоя скота и разделки туш; расчет ...
0 комментариев