Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования
Вятский государственный гуманитарный университет

Математический факультет

Кафедра алгебры и геометрии

Выпускная квалификационная работа

Положительные и ограниченные полукольца

Выполнил:

студент V курса математического факультета

Ворожцов Вячеслав Андреевич  _____

Научный руководитель:

кандидат физико-математических наук, доцент кафедры алгебры и геометрии В.В. Чермных  ________

Рецензент:

доктор физико-математических наук, профессор кафедры алгебры и геометрии Е.М. Вечтомов _______

Допущена к защите в государственной аттестационной комиссии

«___» __________2005 г. Зав. кафедрой Е.М. Вечтомов

«___»___________2005 г. Декан факультета В.И. Варанкина

Киров

2005


Содержание

Введение........................................................................................................... 3

Глава 1. Основные понятия теории полуколец ............................................. 4

1.1. Определение полукольца. Примеры.................................................. 4

1.2. Дистрибутивные решетки.................................................................... 5

1.3. Идеалы полуколец............................................................................... 6

Глава 2 Положительные и ограниченные полукольца.................................. 7

2.1. Определение и примеры положительных и ограниченных полуколец 7

2.2. Основные свойства положительных и ограниченных полуколец..... 7

Библиографический список........................................................................... 16


Введение

Теория полуколец – это раздел современной алгебры, обобщающий как кольца, так и дистрибутивные решетки. Понятие полукольца возникло в 30-х годах прошлого столетия. Как самостоятельная теория полукольца начали изучаться в 50-е годы. Особенно интенсивно теория полуколец развивается последние 20 лет, что вызвано не только теоретическим интересом, но и многочисленными ее приложениями.

Целью данной работы является изучение классов положительных и ограниченных полуколец, рассмотрение основных свойств данных алгебраических объектов, часть из которых доказывается автором работы самостоятельно; приведены примеры полуколец.

Работа состоит из 2 глав. В первую главу вошли основные определения и факты, на которые опирается эта работа. Вторая – основная часть всей работы, в ней рассмотрены определения и свойства положительных и ограниченных полуколец, приведены примеры, доказаны некоторые теоремы.


Глава I. «Основные понятия теории полуколец».

1.1. Определение полукольца. Примеры.

Определение полукольца: Непустое множество S с бинарными операциями + и · называется полукольцом, если выполняются следующие аксиомы:

1.  (S,+) – коммутативная полугруппа с нейтральным элементом 0;

·     Ассоциативность: ;

·     Коммутативность: ;

·     Существование нейтрального элемента: .

2.  (S,·) – полугруппа:

·     Ассоциативность: ;

3.  Умножение дистрибутивно относительно сложения:

·     левая дистрибутивность:  а(в+с)=ав+ас;

·     правая дистрибутивность:  (а+в)с=ас+вс.

4.  Мультипликативное свойство 0:

·     .

Эта аксиоматика появилась в 1934 году и ее автором является Вандовер.

Полукольцо S называется коммутативным, если операция  в нем коммутативна: .

Полукольцо S называется полукольцом с единицей, если в нем существует нейтральный элемент по умножению, который называется единицей (1):

Примеры полуколец:

1.   <N,+,·>, где N – множество неотрицательных целых чисел с обычными операциями + и ·;

2.   <{0},+,·> - тривиальное полукольцо;

3.   Двухэлементные полукольца:<Z2 ,+,·>, <В,+,·> (в В 1+1=1);

4.   Множество матриц с элементами из полукольца N и операциями + и ;

5.   Множества N, Z, Q+, Q, R+, R и введенных на них различных комбинаций операций: обычные сложение и умножение, максимум  и минимум  двух чисел, НОД и НОК, когда они определены.

Полукольцо с импликацией   называется мультипликативно (аддитивно) сократимым.

Полукольцо, в котором выполняется равенство  , называется мультипликативно (аддитивно) идемпотентным.


Информация о работе «Положительные и ограниченные полукольца»
Раздел: Математика
Количество знаков с пробелами: 13084
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
17263
0
0

... S с 1 изоморфно прямому произведению кольца и антикольца тогда и только тогда, когда его идеал R(S) имеет единичный элемент, коммутирующий с каждым элементом из S [1]. 3. Полукольцо S служит 0-расширением кольца с помощью полутела тогда и только тогда, когда идеал R(S) полульца S простой (т.е. abÎR(S) влечет aÎR(S) или bÎR(S)). 4. Для полукольца S с 1 фактор-полукольцо S/R(S) ...

Скачать
188739
34
14

... Фк = 365 × 24 = 8760 ч Номинальный фонд времени – это количество часов в году в соответствии с режимом работы без учета потерь. Так как термическое отделение высокотемпературного отжига анизотропной электротехнической стали работает непрерывно, то номинальный фонд равен полному календарному, то есть Фн = Фк = 8760 ч. Действительный фонд времени равен тому времени, которое может быть ...

Скачать
76630
0
0

... дела как нельзя лучше играла на руку вредителям». (Мордвинов А.Г. «Искусство в массы», 1930, №12. От редакции «Современная архитектура», 1930, №5, стр. 2—3). 4. Коммуна и человек. Жилые дома и клубы Теперь перейдем к конкретным постройкам в Москве 1920-х годов. В первую очередь надо было решать жилищную проблему. Жилищное строительство после нескольких лет разрухи и гражданской войны ...

Скачать
35814
10
1

... и отпуска холодных блюд 10-14С; -  повар обязательно следит за чистотой своего места. Отходы собираются в специальный отдельный бак и выносятся два раза в день.   3.4 Организация работы овощного цеха В столовой овощной цех находится рядом с кладовой овощей. Овощные полуфабрикаты поступают в горячий и холодный цеха, где и завершается выпуск готовой продукции. Технологический процесс ...

0 комментариев


Наверх