1.         х – парне число

2.         Поет х написав поему “ Сон”.

Ці речення не є висловленням, бо неможна сказати чи вони “і” чи “х“. Якщо змінну в першому реченні замінити числом, а в другому прізвищем поета, то вони перетвореться у висловлення.

Предикатом називається твердження, в яке входять вільні змінні і яке при заміні їх коректними значеннями стає висловленням.

Це є одномісні предикати.

Для кожного предиката треба, вказати множину значень, які може приймати змінна х. Цю множину називають областю визначення предиката і в першому прикладі область визначення – N, у другому - множина прізвищ поетів.

Предикат позначають великими буквами:

P(x), Q(x), R(x), S(x), де х Х.

Множина тих значень змінних, при яких предикат набуває істиного значення називається областю істинності предиката і позначається Т. Область істиності є підмножиною області визначення Т  Х.

У першому прикладі Т = {x | x N i є парне}

У другому прикладі Т = { Шевченко }

Предикат в який входить дві змінні називаються двомісним. Приклади:

1.   x > y;

2.   “Поет х написа поему у “

Двомісні предикати позначаються P(x, y), Q(x, y) які визначені на множенні Х × У.

В математиці зустрічаються багато предикатів, причому деякі з них мають спеціальні позначення

„х = у“; „х < у“; „х ║ у“; „х  у“ і т.д.

В математиці зустрічається і трьох, чотирьох і т.д. місні предикати. Приклади:

1. Число х ділиться на число у і на число z.

2. Всі числа, які діляться на х і у, діляться і на z.

3. Сума чисел х і у дорівнює добутку чисел U і V.

4. а1х1 + а2х2 + а3х3 + … + аnxn = b n–місний предикат

Нехай Q (a, b) – двомісний предикат.

(a - b)² = а² – 2ab + b². Цей предикат перетворюється на істинне висловлення при всіх дійсних значеннях „a” і „b”. Областю істинності предиката Q є множина всіх дійсних чисел R. Такий предикат називається тотожно істинним.

Рівності, рівняння, нерівності та їх системи, що розглядаються в математиці, з точки зору логіки – предикати.

 

§ 3. 4. Квантори.

У математиці часто використовують вирази „для всіх”, „для кожного”, „яке б не було”, „існує”, „знайдеться хоча б одне”.

Для позначення цих виразів вживаються символи, які називаються кванторами: квантор загальності , який позначається , у звичайній мові йому відповідає вираз „для кожного”, „для всякого”, „для всіх”.

Нехай Р(х) – „Трикутник х прямокутний», то вираз (х є Х) Р(х) читається:

1.      Будь-який трикутник прямокутний

2.      Кожний трикутник прямокутний

3.      Всі трикутники прямокутні

Усі ці висловлення є хибними. Отже, в результаті квантифікації (приписуванні кватора) предикат перетворюється у висловлення. Цей квантор називається квантором загальності.

Розглянемо ще квантор існування, який позначається . У звичайній мові йому відповідає вираз: „існує”, „знайдеться хоча б одне”.

Нехай Р(х): „х > 5”

Вираз ( х є R) (х > 5) читається:

1.   Існує дійсне число х таке, що х > 5

2.   знайдеться таке дійсне число х, яке > 5

3.   хоча б одне дійсне число > 5

В результаті квантифікація, навішування квантора на змінну предикат перетворився у висловлення.

Над предметами, так само, як і над множинами можна проводити операції кон’юнкцію, диз’юнкцію, заперечення, імплікацію і еквіваленцію.

 

§ 3. 5. Поняття про теореми.

Які б ми розділи математики не розглядали скрізь ми зустрічаємось з твердженнями, які називаємо теоремою.

Теорема – це математичне твердження, істинність якого з’ясовується доведенням (міркуванням).

Формулювання будь-якої теореми складається з двох частин: умови і висновку, який випливає з даної умови.

Розглянемо приклад. Теорема: „Якщо точка лежить на бісектрисі кута, то вона рівновіддалена від сторін цього кута”.

Якщо умову позначити через Р (х), то вона буде виражатися реченням: „Точка лежить на бісектрисі”, а висновок позначити через Q (х), то це буде речення „Точка рівновіддалена від сторін кута”. Як умова так і висновок є предикатами, які задані на множині Х всіх точок площини. Тому дану теорему можна записати у вигляді

(х є Х) (Р(х)  Q (х))

Отже, в цій теоремі ми виділили такі три частини:

1.         Умова теореми: предикат Р (х), заданий на множині Х усіх точок площини.

2.      Висновок теореми: предикат Q (х), який заданий на множені Х

3.         Пояснювальна частина х є Х: в ній описується множина об’єктів, про які йде мова в теоремі.

Умова і висновок не завжди є елементарними висловленнями, а можуть мати складну логічну структуру, найчастіше кон’юктивну або диз’юнктивну.

Наприклад:


Информация о работе «Комбінаторика»
Раздел: Математика
Количество знаков с пробелами: 35176
Количество таблиц: 14
Количество изображений: 10

Похожие работы

Скачать
54810
5
18

... . Поклавши у формулі (4) а = b = 1, дістанемо Нехай маємо скінченну множину, яка містить п елементів. Тоді кількість підмножин цієї множини дорівнює 2n. Наприклад, для множини {a,b,c} маємо Ø, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c}.   ПОЧАТКИ ТЕОРІЇ ЙМОВІРНОСТЕЙ   § 1. Про предмет теорії ймовірностей До цього часу розглядалися задачі, в яких результат дії був однозначно ...

Скачать
39362
0
15

... структуро творча одиниця діяльності (операція діяльності) КОМБІНАТОРИКА ФОРМОТВОРЕННЯ Комбінаторика — математичний термін, запозичений теорією і практикою художнього проектування. Комбінаторика в дизайні — особливий творчий підхід до формотворення, заснований на пошуку і дослідженні закономірностей варіантної зміни просторових структур, а також способів упорядкування проектування об'єктів ...

Скачать
11728
0
1

... . 5.  Існують 4 точки неколлінеарні по трьох. Тоді кінцева множина P точок і множина L прямих утворить кінцеву проективну площину. Для знаходження кусково-постійних конфігурацій множин треба спочатку на множині усіх множин ввести Р(D) лінійні бінарні відношення  та =. Матимемо частково впорядковану множину . Потім знаходимо ті групи множин, які у заданій конфігурації розташовані поряд і які ...

Скачать
44165
7
1

... речовин мармелад випускають різних найменувань: яблучний, сливовий, абрикосовий, полуничний та інші. З.Г. Скобельська, Г.Н. Горячева «Технологія виробництва цукрових кондитерських виробів» в залежності від застосованого драглеутворюючого компонента мармеладні вироби поділяють на чотири групи: з натуральними чистими драглеутворювачами – агар-агаром, агароїдом, фурцелараном, пектином (желейні ...

0 комментариев


Наверх