1. Теоретическая часть

Подпись:                

                Z                х
                                      
                                      v1         
                                                                   F2                                                          F1                                                          
                                                                
                                                           v2                                                              
    

Рис.1. Возникновение трения в газах

Вязкость газов, в отличие от жидкостей, увеличивается при повышении температуры. Различный характер зави­симости вязкости газов и жидкостей от температуры указывает на различный механизм их возникновения, хотя формула Ньютона - -одинаково справедлива и для обоих этих состояний.

Подпись:         -Dpx2     р2
                  
Подпись:   Dpx1     р1
Рассмотрим, как возникает внутреннее трение в газах. В отличие от жидкостей здесь силы внутреннего трения возникают в результате микрофизического процесса передачи импульса от одного слоя газа к другому. Переносчиками импульса выступают молекулы газа.

Выделим в движущемся потоке газа вдоль вектора скорости два параллельных соприка­сающихся слоя. Пусть скорости v их движения по величине и направлению тако­вы, как показано на рисунке. В тепловом движении импульсы р молекул и их проекции рx в рассмат­риваемых слоях неодинаковы. Молекулы, находящиеся в более медленном, «нижнем» слое, имеют меньшую составляющую импульса рx и, по­пав в «верхний» слой, затормаживают его. Δрх – изменение импульса - направлено навстречу движению этого слоя. «Верхние» же молекулы, наоборот, перено­сят вниз импульс больший, чем имеют молекулы «нижнего» слоя, и поэтому ускоряет нижний слой.

По второму закону Ньютона Δрх/Δt=F – сила сопротивления движению. Она зависит от массы молекул, их концентрации (частота переноса импульсов) и температуры (скорость молекул). Таким образом, вязкость газов тем больше, чем больше их молекулярная масса. Она увеличивается также с повышением давления, поскольку при этом растёт концентрация газа. Отсюда также становится понятным, что чем выше температура газа, тем больше скорость теплового движения и интенсивней обмен молекулами ме­жду его слоями, а, следовательно, тем больше коэффициент вязкости этого газа.

 

2. Определение вязкости воздуха по методу Пуазейля

2.1. Теория метода

При ламинарном движении жидкостей и газов по гладким цилиндрическим трубам расход Q (объем жидкости или газа, протекающих через поперечное сечение трубы за время Dt), зависит от ее вязкости, диаметра трубы, ее длины и разности давления на ее концах. Соответствующее соотношение было выведено Пуазейлем и носит его имя.

Q=Dppr4Dt/8hl , (1)

В нее входят перепад давления Dp на концах трубы, её радиус r , длительность течения Dt, коэффициент вязкости h, длина трубы l.

На основании этого соотношения разработан и широко применяется метод измерения вязкости жидкостей и газов - метод Пуазейля. [3]

 Для газов метод предполагает измерение расхода газа при его ламинарном протекании по гладкому, тонкому, капиллярному каналу с известными размерами и при контролируемой разности давлений. В данной работе по методу Пуазейля определяется вязкость неосушенного и неочищенного воздуха. Хотя известно, что эти параметры оказывают большое влияние на величину вязкости газов. В установках для точных измерений воздух перед поступлением в капилляр осушают различными, чаще всего химическими осушителями. Важно также помнить, что вязкость газов в большой степени зависит от их температуры, что также предусмотрено в лабораторных приборах.

 


Информация о работе «Измерение динамической вязкости жидкостей и газов»
Раздел: Физика
Количество знаков с пробелами: 30324
Количество таблиц: 7
Количество изображений: 8

Похожие работы

Скачать
47310
0
0

... состояние равновесия – на поверхность тела действует сила давления жидкости, которая уравновешивает вес жидкости внутри поверхности. Движение жидкостей и газов. Движение жидкостей и газов, как и все другие виды движения, рассматриваемые в механике, можно полностью охарактеризовать, оперируя единицами измерения длины, времени и силы. Так, диаметр парашюта можно измерять в метрах, время ...

Скачать
24044
2
13

... называется кинематической вязкостью. Чтобы отличить ее от v, величину n называют ди­намической вязкостью. Будучи выраженным через кинематическую вязкость, число Рейнольдса имеет вид   5. Движение тел в жидкостях и газах. Воздействие жидкой или газообразной среды на движущееся в ней с постоянной скоростью v тело бу­дет таким же, каким было бы действие на неподвиж­ное тело набегающего ...

Скачать
191065
4
84

... . Для оценки режима течения жидкости вво­дят специальный критерий; число кавитации К f ' 7. Истечение жидкости из отверстий и насадков > 7.1. Отверстие в тонкой стенке Одной из типичных задач гидравлики, которую можно назвать задачей прикладного характера, является изучение процессов, связанных с истечением жидкости из отверстия в тонкой стенке и через насадки. ...

Скачать
110759
5
14

... в любых скальных породах не вызывает сомнения. Для понимания процесса формирования полезной емкости коллекторов рассмотрим некоторые факты, полученные за последние годы при изучении различных типов коллекторов нефти и газа. Многими работами последних лет достаточно убедительно показано, что основная полезная емкость коллекторов (терригенных и карбонатных) представляет собой поры, каверны и ...

0 комментариев


Наверх