2.2. Экспериментальная установка

Экспериментальная установка для определения воздуха (рис. 2) состоит из сосуда - 1 со сливным шлангом - 2, капилляра -3, мерительного стакана -4 и жидкостного манометра - 5. Перед опытом сосуд заполняется водой. При опущенном шланге 2 вода из сосуда вытекает и давление становится ниже атмосферного. Так создается перепад давлений воздуха на концах А и В капилляра 3. Он измеряется манометром 5. Этот перепад давлений создает поток воздуха через капилляр, при этом объем вытекшей воды равен объему воздуха, прошедшего через капилляр.

Расчетная формула для определения коэффици­ента вязкости по методу Пуазейля имеет вид:

h=Dppr4Dt/8lQ , (2)

где – r радиус капилляра, l - его длина, Q- объем прошедшего через капилляр воздуха (равен объему вы­текшей из сосуда жидкости), Dр - перепад давле­ний на концах капилляра (показание манометра), Dt - время протекания воздуха через капилляр.

 

Ход выполнения работы

1. Закрепите сливной шланг в верхнем по­ложении. Заполните сосуд 7 водой и плотно закрепите пробку с капилляром в его горловине.

2. Опустите сливной шланг вниз, подставив под него мерный сосуд. Измерьте секундомером время t, в течение которого из сосуда вытечет объем Q=200 см3 воды.

3. Измерьте в это же времени перепад давлений Dр по манометру.

Примечание: При постепенном понижении уровня воды в сосуде скорость истечения уменьшается. Это приводит к изменению перепада давлений воздуха на концах капил­ляра. Поэтому необходимо брать среднее за время опыта значение Dр.

4. По формуле (2) вычислите вязкость воздуха.

5. Опыт повторите не менее пяти раз. Результаты занесите в таблицу 2 отчета.

6. Оцените относительную погрешность измерения вязкости воздуха. Погрешности измерений диаметра и длины капилляра возьмите из «паспорта» прибора.

9. В выводе сравните полученное значение вязкости воздуха с табличным значением (h= 1,8×10-5 Па×с при 18оС)

Дополнительное задание

1. Вычислите плотность воздуха по формуле ρ=pM/RT, где М = 0,029 кг/моль – молярная масса воздуха, R - универсальная газовая постоянная, давление р и температуру Т измерьте по приборам в лаборатории.

2. Вычислите среднюю арифметическую скорость νср молекул воздуха при данных условиях.

3. Вычислите среднюю длину свободного пробега  молекул воздуха при нормаль­ных условиях, исходя из формулы связи ее с коэффициентом вязкости .

4. Исходя из формулы р = nkT , вычислите концентрацию п молекул воздуха в лаборатории (k - постоянная Больцмана – равна 1.38∙10-23 Дж/К).

5. Вычислить среднее число столкновений молекул, испытываемых одной молекулой за одну секунду .

6. Выполните ряд заданий (см. бланк отчета) практического характера с использование полученных экспериментальных результатов.


 

Отчет по лабораторной работе №2

«Вязкость газов»

выполненной ……………………………………………………………..

Определение вязкости воздуха по методу Пуазейля

Диаметр капилляра d =…… ± …… мм; Длина капилляра I =…... ± ...... мм

 

№ п/п

Объем

прошедшего

через капилляр

воздуха Q,

см3 (или мл)

Перепад

давлений, Dh,

см вод. ст.

Перепад

 давлений Dр,

 Па

Время

протекания воздуха через капилляр t,

 с

Вязкость воздуха

h´10-5 , Па×с

1

2

3

4

5

Среднее значение вязкости воздуха

Формулы для расчета и расчет погрешности измерения вязкости воздуха[4]:

Вывод: ……………………………………………………………………………………………..


Дополнительное задание

Лабораторные условия: p = …… мм рт. ст.= …… Па; T = …… К

Результаты расчетов:

1. Плотность воздуха: r = …… кг/м3

 

2. Средняя арифметическая скорость молекул воздуха: ν = ………….м/с

3. Средняя длина свободного пробега молекул воздуха: λ = ………….м

4. Концентрация молекул воздуха: n =………… 1/м3

 

5. Среднее число столкновений молекул воздуха z = …………с-1.

6. По формуле Стокса с использованием результатов работы рассчитайте:

 а) максимальную скорость падения в воздухе шарика настольного тенниса диаметром 3 см и массой 0.2 г;

б) диаметр парашюта для парашютиста массой 60 кг, если безопасная скорость приземления равна 5 м/с;

в) максимальный диаметр капелек воды, находящихся во взвешенном состоянии (туман).

 
Лабораторная работа №3

 

ПОВЕРХНОСТНОЕ НАТЯЖЕНИЕ В ЖИДКОСТЯХ

 

 


Цель работы: углубление представлений о свойствах поверхности жидкости, о силах натяжения и добавочном давлении под искривленной поверхностью, а также экспериментальное наблюдение и измерение некоторых параметров и соотношений, характеризующих это явление.

 

Оборудование: набор из трех экспериментальных установок; вода, моющие средства.


Информация о работе «Измерение динамической вязкости жидкостей и газов»
Раздел: Физика
Количество знаков с пробелами: 30324
Количество таблиц: 7
Количество изображений: 8

Похожие работы

Скачать
47310
0
0

... состояние равновесия – на поверхность тела действует сила давления жидкости, которая уравновешивает вес жидкости внутри поверхности. Движение жидкостей и газов. Движение жидкостей и газов, как и все другие виды движения, рассматриваемые в механике, можно полностью охарактеризовать, оперируя единицами измерения длины, времени и силы. Так, диаметр парашюта можно измерять в метрах, время ...

Скачать
24044
2
13

... называется кинематической вязкостью. Чтобы отличить ее от v, величину n называют ди­намической вязкостью. Будучи выраженным через кинематическую вязкость, число Рейнольдса имеет вид   5. Движение тел в жидкостях и газах. Воздействие жидкой или газообразной среды на движущееся в ней с постоянной скоростью v тело бу­дет таким же, каким было бы действие на неподвиж­ное тело набегающего ...

Скачать
191065
4
84

... . Для оценки режима течения жидкости вво­дят специальный критерий; число кавитации К f ' 7. Истечение жидкости из отверстий и насадков > 7.1. Отверстие в тонкой стенке Одной из типичных задач гидравлики, которую можно назвать задачей прикладного характера, является изучение процессов, связанных с истечением жидкости из отверстия в тонкой стенке и через насадки. ...

Скачать
110759
5
14

... в любых скальных породах не вызывает сомнения. Для понимания процесса формирования полезной емкости коллекторов рассмотрим некоторые факты, полученные за последние годы при изучении различных типов коллекторов нефти и газа. Многими работами последних лет достаточно убедительно показано, что основная полезная емкость коллекторов (терригенных и карбонатных) представляет собой поры, каверны и ...

0 комментариев


Наверх