Молярная электропроводность растворов электролитов

Коллоидная химия
ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Закон Гесса Зависимость теплового эффекта реакции от температуры. Закон Кирхгофа Статистическая интерпретация энтропии Эндотермические реакции; ΔH > 0 В систему добавлен продукт реакции. В этом случае ХИМИЧЕСКАЯ КИНЕТИКА Реакции нулевого порядка Методы определения порядка реакции Сложные реакции Уравнение Аррениуса Кинетика двусторонних (обратимых) реакций КАТАЛИТИЧЕСКИЕ ПРОЦЕССЫ Ферментативный катализ ОБРАЗОВАНИЕ РАСТВОРОВ. РАСТВОРИМОСТЬ Взаимная растворимость жидкостей Температура кристаллизации разбавленных растворов Понятие активности растворенного вещества Сильные электролиты Молярная электропроводность растворов электролитов Гальванический элемент. ЭДС гальванического элемента Классификация электродов Окислительно-восстановительные электроды Адсорбция на границе раствор – пар Теории адсорбции Адсорбция на границе твердое тело – раствор Методы получения лиофобных коллоидов Коагуляция лиофобных коллоидов Двойной электрический слой и электрокинетические явления Кинетическая устойчивость золей. Седиментация
191966
знаков
8
таблиц
41
изображение

3.4.2 Молярная электропроводность растворов электролитов

 

Молярная электропроводность раствора λ есть величина, обратная сопротивлению раствора, содержащего 1 моль растворенного вещества и помещенного между электродами, расположенными на расстоянии 1 см друг от друга. С удельной электропроводностью κ и молярной концентрацией раствора С молярная электропроводность связана следующим соотношением:

, Ом-1см2моль-1 (III.34)

Молярная электропроводность как сильных, так и слабых электролитов увеличивается с уменьшением концентрации (т.е. увеличением разведения раствора V = 1/С), достигая некоторого предельного значения λo, называемого молярной электропроводностью при бесконечном разведении (рис. 3.8 – 3.9).

Молярная электропроводность 

Рис. 3.8 Зависимость молярной Рис. 3.9 Зависимость молярной электропроводности от концентрации. электропроводности от разведения

Для слабого электролита такая зависимость молярной электропроводности от концентрации обусловлена в основном увеличением степени диссоциации с разбавлением раствора. В случае сильного электролита с уменьшением концентрации ослабляется взаимодействие ионов между собой, что увеличивает скорость их движения и, следовательно, молярную электропроводность раствора. Последнюю связывает с абсолютными скоростями движения катионов и анионов U+ и U уравнение Аррениуса (III.35):

 (III.35)

Ф. Кольрауш показал, что в молярную электропроводность бесконечно разбавленных растворов электролитов каждый из ионов вносит свой независимый вклад, и λo является суммой молярных электропроводностей катиона и аниона λ+ и λ (т.н. подвижностей ионов), и сформулировал закон независимости движения ионов:

Молярная электропроводность при бесконечном разведении равна сумме электролитических подвижностей катиона и аниона данного электролита.

 (III.36)

Подставив в это выражение уравнение Аррениуса (III.35) и приняв, что при бесконечном разведении степень диссоциации α равна единице, получим:

(III.37)

Отсюда

;    (III.38)

Электролитическая подвижность является важнейшей характеристикой иона, отражающей его участие в электропроводности раствора.

3.5 ЭЛЕКТРОХИМИЧЕСКИЕ ПРОЦЕССЫ

3.5.1 Электрические потенциалы на фазовых границах

При соприкосновении проводника первого рода (электрода) с полярным растворителем (водой) либо раствором электролита на границе электрод – жидкость возникает т.н. двойной электрический слой (ДЭС). В качестве примера рассмотрим медный электрод, погруженный в воду либо в раствор сульфата меди.

При погружении медного электрода в воду часть ионов меди, находящихся в узлах кристаллической решетки, в результате взаимодействия с диполями воды будет переходить в раствор. Возникающий при этом на электроде отрицательный заряд будет удерживать перешедшие в раствор ионы в приэлектродном пространстве – образуется двойной электрический слой (рис. 3.10а; о моделях строения ДЭС смотрите п. 4.2.4). Отрицательный заряд на электроде будет препятствовать дальнейшему переходу ионов меди в раствор, и через некоторое время установится динамическое равновесие, которое можно однозначно охарактеризовать потенциалом электрического поля ДЭС Φ, зависящего от заряда на электроде, или некоторой равновесной концентрацией ионов в приэлектродном слое Сo. При погружении медного электрода в раствор СuSО4, содержащий ионы меди в концентрации С возможны три случая:

Двойной электрический слой 

Рис. 3.10 Схема двойного электрического слоя на границе электрод-раствор

1. С < Сo. Поскольку концентрация ионов меди в поверхностном слое меньше равновесной, начнется переход ионов из электрода в раствор; электрод заряжается отрицательно, в поверхностном слое раствора катионов будет больше, чем анионов (рис. 3.9а).

2. С > Сo. Поскольку концентрация ионов меди в поверхностном слое больше равновесной, начнется переход ионов из раствора в электрод; на электроде возникает положительный заряд и в поверхностном слое преобладают анионы SО42- (рис. 3.9b).

3. С = Сo. Поскольку концентрация ионов меди в поверхностном слое равна равновесной (такие растворы называют нулевыми), заряд на электроде не возникает, двойной электрический слой не образуется.


Информация о работе «Коллоидная химия»
Раздел: Химия
Количество знаков с пробелами: 191966
Количество таблиц: 8
Количество изображений: 41

Похожие работы

Скачать
14177
0
0

... «мицелла» и «мицеллярный раствор». Эти термины были использованы им для обозначения систем, образованных нестехиометрическими соединениями в водной среде. Основная заслуга в становлении коллоидной химии как науки принадлежит Т. Грэму. Как уже отмечалось выше, именно этому ученому принадлежит идея введения термина «коллоид», производного от греческого слова «kolla», обозначающего «клей». Занимаясь ...

Скачать
25685
1
9

... Расстояние, пройденное веществом по сорбенту, прямо пропорционально растворимости данного вещества в пропускаемом растворителе. Даёт возможность полностью разделять вещества, входящие в состав разделяемой смеси. Коллоидная химия Дисперсные системы – это системы, состоящие из множества частиц одной фазы (дисперсной), распределённых в объёме другой фазы – дисперсионной. Дисперсионная среда ...

Скачать
83726
2
5

... и многое другое, без чего немыслима сама жизнь. Все человеческое тело – это мир частиц, находящихся в постоянном движении строго по определенным правилам, подчиняющимся физиологии человека. Коллоидные системы организмов обладают рядом биологических свойств, характеризующих то или иное коллоидное состояние: 2.2 Коллоидная система клеток. С точки зрения коллоидно-химической физиологии ...

Скачать
6800
0
0

... металлов с белками, нуклеиновыми кислотами, липидами. Её практическое применение связано с синтезом фарамакологических препаратов, действие которых обусловленно комплексными ионами металлов. Биоорганическая Химия Изучает связь между строениями органических веществ и их биологическими функциями, использующих в основном методы органической и физической химии, а также физики и математики. ...

0 комментариев


Наверх