Міністерство освіти і науки України

Херсонський державний університет

Факультет фізики, математики та інформатики

Методичне забезпечення розділу

“Математична логіка”

курсу дистанційного навчання дисципліни дискретна математика

Курсова робота

Науковий керівник

Доцент

Шишко Л.C.

Виконавець студент денної

Рибакін В.В.

форми навчання 421 групи

Херсон 2008


План

Вступ

Розділ І. Логіка висловлювань.

1.1. Основні поняття логіки висловлювань.

1.2. Закони логіки висловлювань.

1.3. Нормальні форми логіки висловлювань.

Розділ ІІ. Логіка предикатів.

2.1. Основні поняття логіки предикатів.

2.2. Закони логіки предикатів.

2.3. Випереджена нормальна форма логіки предикатів.

Література.


Вступ

Математична логіка займає одне з найважливіших місць у сучасній математичній науці. Вона знайшла широке застосування в найрізноманітніших галузях наукових досліджень. Математична логіка з великим успіхом використовується в теорії релейно-контактних схем і в теорії автоматів, тобто в кібернетиці, в лінгвістиці, в економічних дослідженнях, у фізіології мозку і психології тощо.

Актуальність. Математична логіка дуже важлива для вчителів математики. Вона дає можливість краще зрозуміти структурно-логічну схему шкільного курсу математики, глибше вникнути в суть поняття доведення, з’ясувати зміст поняття логічного слідування, встановити зв’язки між різного роду теоремами тощо. З цих причин Я й обрав дану тему для написання курсової роботи. На мою думку ця тема є важливою в математиці. Тому що розвиток математичної логіки як науки дав значний вплив у розвитку математичної науки. Значну внесок у розвиток математичної логіки зробили такі вчені як: Платон, Аристотель, Лейбніц, Буль, Гільберт.

Об’єктом дослідження є основні поняття математичної логіки.

Історично математична логіка будувалась як алгебраїчна теорія, у якій зв’язки між різними поняттями логіки виражалися за допомогою операцій. Така побудова математичної логіки згодом дістала назву алгебри висловлень і алгебри предикатів, причому алгебра висловлень уходить як частина в алгебру предикатів. Вона називається також змістовною побудовою математичної логіки і нею часто вичерпується виклад математичної логіки, причому апарату логіки предикатів достатньо, щоб ставити і розв’язувати досить важливі й складні задачі. Поряд з потребою змістовної побудови математичної логіки виникла потреба будувати математичну логіку як формально-аксіоматичну теорію, для якої алгебра предикатів є однією з можливих інтерпретацій.

У першому розділі розглянуто змістовні поняття й елементи логіки висловлень. Разом із цим, уже в першому розділу курсової роботи вводиться проблематика множин і логіки, яка істотно використовується в штучному інтелекті. А в другому розділі описано логіку предикатів.


Розділ І. Логіка висловлювань.

 

1.1. Основні поняття логіки висловлювань

Висловлюванням називають розповідне речення, про яке можна сказати, що воно або істинне, або фальшиве, але не одне й інше разом. Розділ логіки, що вивчає висловлювання та їхні властивості, називають пропозиційною логікою, або логікою висловлювань. Уперше систематичне викладення логіки було зроблене грецьким ученим Аристотелем понад 2300 років тому.

Приклад 1.1. Наведемо приклади речень.

1.  Сніг білий.

2.  Київ - столиця України.

3.  х+1=3.

4.  Котра година?

5.  Читай уважно!

Два перших речення є висловлюваннями, останні три - ні. Третє речення набуває істинне або фальшиве значення залежно від значення змінної х, четверте та п'яте речення - не розповідні.

Значення "істина" або "фальш", які надані деякому висловлюванню, називають значенням істинності цього висловлювання. Значення "істина" позначають літерою Т (від англійського truth), а "фальш" - літерою F (від false). Для позначення висловлювань використовують малі латинські букви як з індексами, так і без них. Символи, що використовують для позначення висловлювань, називають атомарними формулами, або атомами.

Приклад 1.2.

1.    р: "Сніг білий".

2.    g: "Київ - столиця України".

Тут символи р, g атомарні формули.

Багато речень утворюють об'єднанням одного або декількох висловлювань. Отримане висловлювання називають складним висловлюванням. Його утворюють із наявних висловлювань застосуванням логічних зв'язок. Такі побудови вперше розглянуто 1845 р. у книзі англійського математика Д.Буля "The Laws of Truth".

Розглянемо питання побудови нових висловлювань з тих, що ми вже маємо. Для цього в логіці висловлювань використовують п'ять логічних зв'язок: заперечення (читають "не" та позначають "¬"), кон'юнкцію (читають "і" та позначають ""), диз'юнкцію (читають "або" та позначають ""), імплікацію (читають "якщо..., то" та позначають "→") та еквівалентність (читають "тоді й лише тоді" та позначають "~").

Приклад 1.3.

1.  Сніг білий і небо теж біле.

2.  Якщо хороша погода, то ми їдемо відпочивати.

У наведених прикладах логічні зв'язки - це "і" та "якщо..., то".

Приклад 1.4. Розглянемо прості висловлювання, які позначимо:

р: "Висока вологість", g: "Висока температура", r: "Ми почуваємо себе добре". Тепер речення "Якщо висока вологість та висока температура, то ми не почуваємо себе добре" можна записати у вигляді складного висловлювання ((pg)→(¬r)).

У логіці висловлювань атом p або складне висловлювання називають правильно побудованою формулою, або формулою. При вивченні формул розглядають їх два аспекти — синтаксис та семантику.

Синтаксис - це сукупність правил, які дозволяють будувати формули та розпізнавати правильні формули серед послідовностей символів.

Формули у логіці висловлювань визначають за такими правилами:

1.  Атом є формулою.

2.  Якщо р формула, то (¬p) - теж формула.

3.  Якщо р та g - формули, то (рg), (рg), (р→g), (¬g) - формули.


Информация о работе «Математична логіка»
Раздел: Математика
Количество знаков с пробелами: 34324
Количество таблиц: 8
Количество изображений: 0

Похожие работы

Скачать
30757
0
0

... його функцій і структури, тобто ролі і значення в пізнанні і практичній діяльності, і в той же час з погляду складових його елементів, а також зв'язків і відносин між ними. Це і є власний, специфічний предмет логіки. Тому вона визначається як наука про форми і закони правильного мислення, що веде до істини. Що ж таке логічна культура? Це культура мислення, що виявляється в культурі письмового й ...

Скачать
29719
0
0

... (логіці, етиці і політиці) означає не що інше, як повернення до традиціоналістсько-авторитарного типу цивілізації, на що і претендував тоталітаризм XX в. 3. Загальне і відмінності формальної і діалектичної логіки В четвертій книзі “Метафізики" Арістотель ставив питання: який принцип є таким самоочевидним, що його можна покласти в основу істинної філософії. Таким самоочевидним принципом Арі ...

Скачать
17324
0
0

... , сполучників, префіксів і префіксальних словоформ, розділових знаків, а також за розподілом довжини речення). Крім статистичних методів, у мовознавстві застосо­вують методи теорії інформації, математичної логіки, теорії ймовірностей і теорії множин. 3. Застосування математичних теорій. Дані теорії інформації використовуються для найекономнішої передачі інформації засобами мови. Кож­на ...

Скачать
110024
13
4

... і продукції. Виробничі потужності ТОВ «Брусилівський маслозавод» дозволяють виробляти близько 150 т масла, 30 т глазурованих сирків за рік, переробляючи приблизно 1000 кг молока за день. Основні споживачі продукції ТОВ «Брусилівський маслозавод» - населення Брусилівсьекого району та районів, що знаходяться поруч з Брусилівським, Житомирської області. .  Отже, ТОВ «Брусилівський маслозавод» – ...

0 комментариев


Наверх