1. Поняття та закон розподілу системи випадкових величин
До цього часу ми розглядали одномірну випадкову величину X. Однак в сучасній теорії математичної обробки результатів багаторазових повторних геодезичних вимірювань використовують багатомірні випадкові величини. Багатомірна випадкова величина може складатися із декількох компонентів і бути двомірною, тримірною і так далі. Так, наприклад, координати точки на площині визначаються двома випадковими величинами: абсцисою X та ординатою У; положення точки в просторі визначається вже трьома координатами - X, Y та висотою Н.
Сумісна дія двох чи більше випадкових величин приводить до системи випадкових величин. Умовимось систему декількох випадкових величин X, У, ..., N позначати (X, У, ..., N). При вивченні системи випадкових величин визначають характеристики як кожної випадкової величини, так і зв'язки та залежність між ними. А це вже більш складні задачі.
Домовимось, що систему двох випадкових величин (Х, У) ми будемо розглядати як випадкову точку на площині х0у з координатами X і У, або як випадковий вектор на площині з випадковими складовими X i У. Систему трьох випадкових величин (X, У, Z) - як випадкову точку в тримірному просторі або, як випадковий вектор в просторі. За аналогією, систему n -випадкових величин (X, У, ..., N) розглядають як випадкову точку в n-мірному просторі або, як n-мірний випадковий вектор.
Законом розподілу системи випадкових величин називають співвідношення, що встановлює зв'язок між областями можливих значень системи випадкових величин і ймовірностями появи їх в цих областях.
Закон розподілу системи випадкових величин можна задавати в різних формах. Покажемо табличний спосіб розподілу системи дискретних випадкових величин.
Якщо X та У - дискретні випадкові величини, значення яких дорівнюють (ХbУj), де і = , а j = (), то їх розподіл системи можна характеризувати ймовірностями рij = Р(Х = х1; Y = y1. Це означає, що коли випадкова величина X приймає значення х1 одночасно і величина Y прийме значення уj
Всі можливі події (X = xі, Y = yj) і = , а j = () складають повну групу несумісних подій і тому
2. Система двох випадкових величин
В практиці геодезичних вимірів досить часто взаємодіють дві випадкові величини X та У, тобто двомірні випадкові величини. В попередньому параграфі ми наводили приклад з координатами точки. При лінійних вимірах взаємодіють - довжина мірного приладу та температура. При дослідженнях деформацій інженерних споруд взаємодіють — величина осідання та інтервал часу і так далі.
Закон розподілу системи двох випадкових величин задають функцією розподілу та щільністю розподілу.
Функцією розподілу системи двох випадкових величин називають функцію двох аргументів F (х,у), що дорівнює ймовірності сумісного виконання двох нерівностей Х<х і У < у, тобто
F(x,y) = P (X<x I Y<y)
Геометричне функцією розподілу системи двох випадкових величин є ймовірність попадання випадкової точки (Х,У) в нескінченний квадрат площини з вершиною в точці (х,у).
Функція розподілу має такі властивості:
1. Якщо один із аргументів наближається до плюс нескінченності, то функція розподілу системи наближається до функції розподілу випадкової величини другого аргументу, тобто
2. При наближенні обох аргументів до плюс нескінченності функція розподілу F (х,у) наближається до одиниці:
або
3. При наближенні одного чи обох аргументів до мінус нескінченності функція розподілу наближається до нуля:
Практичне значення мають системи неперервних випадкових величин, розподіл яких характеризують щільністю розподілу (х, у). За допомогою неї більш просто знаходять імовірність попадання в різні області, а опис розподілу системи випадкових величин стає більш наочним.
Щільність розподілу системи двох випадкових неперервних величин визначають як другу змішану часткову похідну від функції F(х,у), тобто
Функція розподілу F(х,у) визначається за формулою
Щільність розподілу системи двох випадкових величин має властивості:
1. Щільністю розподілу є функція
2. Подвійний інтеграл з нескінченними межами від функції щільності розподілу дорівнює одиниці:
Геометрично це свідчить про те, що об'єм тіла, відмежованого поверхнею розподілу і площиною х0у, дорівнює одиниці.
Щільності розподілу величин х та у, що входять в систему, визначають за формулами:
Тобто, для визначення щільності розподілу однієї із системи випадкових величин, треба проінтегрувати в необмежених межах щільність розподілу системи (х,у) за аргументом другої випадкової величини.
Якщо відомі щільності розподілу окремих випадкових величин системи і випадкові величини х та у незалежні між собою, то можна визначити закон їх сумісного розподілу за формулою
Поняття залежності та незалежності випадкових величин має велике значення в теорії ймовірностей та при математичній обробці результатів вимірів.
Випадкова величина X буде незалежною від випадкової величини У, якщо закон розподілу величини X не залежить від прийнятого значення величини У, тобто
і навпаки, для випадкової величини Y маємо
Якщо вони взаємно залежні між собою, то ;
Випадкові величини Х і У незалежні, якщо щільність сумісного розподілу (х,у) можна визначити у вигляді добутку двох множників, кожен із яких утримує тільки величини х та у, тобто
Додамо, що при розкладанні, функції , (у) з точністю до постійної множників збігаються з щільностями розподілу 1(х) і 2(у).
Між випадковими величинами виникає функціональна або стохастнчна (ймовірна) залежність.
Функціональною залежністю між випадковими величинами X і У називають таку залежність, коли кожному значенню X відповідає точне значення У.
Стохастичною (ймовірною) залежністю між випадковими величинами X і У називають таку залежність, при якій кожному значенню х можна вказати розподіл величини у, яке змінюється при зміні х.
Така залежність в практичній діяльності зустрічається досить часто. Наприклад, зріст та вага людини, висота і товщина дерева в лісі, величина деформації інженерних споруд, час їх експлуатації і т.д.
Тобто у випадку ймовірної залежності на кожне точне значення аргументу х можна вказати значення випадкової величини у з певною мірою ймовірності (Ру).
Система двох випадкових величин може підкорятися різним законам розподілу. Проте в практиці геодезичних вимірювань найбільше розповсюдження має нормальний закон розподілу.
... і працездатності людини в процесі труда. Максимальне зменшення числа шкідливих впливів, створення комфорту — от головні задачі охорони праці. Тема дипломної роботи — “Моделювання процесу обробки сигналів датчика у вихровому потоковимірювачі”. Машинний зал ПЕОМ є помешканням з підвищеною небезпекою поразки людини електричним струмом, тому що в даному помешканні присутня можливість одночасного ...
... , що виявляються. Наслідком цього правила є необхідність застосування тим більше вдосконалених математичних методик, чим менш досконалі інші методи (фізичні, хімічні, фізіологічні, біохімічні тощо), які використовуються в медико-біологічних дослідженнях. Іншими словами, маючи можливість використовувати досить могутній математичний апарат, можливо спрощувати і скорочувати процес вивчення явища за ...
... фахівцями, в обов'язки яких не входить аналіз похибок результатів вимірювання. Для забезпечення необхідного рівня точності технічних вимірювань при їхньому виконанні користуються атестованими методиками виконання вимірювань, які розробляють висококваліфіковані спеціалісти - метрологи. Вимірювання ФВ за наявністю або відсутністю розмірності у вимірюваних величин поділяють на вимірювання розмірних ...
... дипломного проекту. Рисунок 3.1 – Схема електрична структурна пристрою контролю середнього значення кутової швидкості 4. Розробка принципової схеми комп’ютеризованої вимірювальної системи параметрів електричних машин з газомагнітним підвісом 4.1 Аналіз лінійного фотоприймача Фотоелектричні перетворювачі площа-напруга (ППН) використовуються у багатьох пристроях, таких як перетворювач ...
0 комментариев