3. Типизация приёмов введения новых неизвестных при решении алгебраических уравнений
В третьей части курсовой работы осуществим типизацию приёмов введения новых неизвестных при решении алгебраических уравнений.
Введение новых переменных может быть как явным, так и неявным. Классифицируем наши уравнения по способам неявной реализации метода замены переменной:
Использование основного свойства дроби.
Использование основного свойства дроби применяется в уравнениях следующего вида:
где постоянные, .
В таких уравнениях сначала проверяют, является ли корнем уравнения, и производят замену .
Выделение квадрата.
Выделение квадрата двучлена чаще всего встречается при решении уравнений, которые можно привести к такому виду, чтобы одна часть уравнения представляла собой сумму квадратов двучлена.
Переход к системе уравнений.
Этот приём целесообразен при решении уравнений вида
где коэффициенты и равны, противоположны по знаку или отличаются на постоянный множитель.
Раскрытие скобок парами.
Такой метод даёт хороший эффект в уравнениях вида
Где или или
Раскрытие скобок парами и деление обеих частей уравнения.
Раскрытие скобок парами и деление обеих частей уравнения целесообразно применять в случаях, когда перед нами уравнение вида
где , или или .
Сведение к однородному уравнению.
Преобразовав один из множителей и выделив из него выражение, равное второму множителю и подставляя полученное выражение в исходное уравнение, удаётся прийти к однородному уравнению второй степени, т.е. к уравнению вида
где - постоянные, отличные от нуля, а , - многочлены.
Тригонометрическая подстановка.
Тригонометрическая подстановка используется в тех случаях, когда область определения исходного уравнения совпадает с областью значения тригонометрической функции или включается в эту область.
4. Комплект типовых задач, сводящихся к применению метода замены при решении уравнений
Исходя из четвёртой задачи курсовой работы, составим комплект типовых задач, сводящихся к применению метода замены при решении уравнений.
Пример 1.
Решение. ОДЗ уравнения есть все действительные . Сделаем замену неизвестной , где . Тогда исходное уравнение запишется в виде
(1)
, то уравнение (1)
Из решения этих уравнений промежутку принадлежат только . Поэтому
Ответ:
Пример 2.
Решение. Если сделать замену уравнение упрощается, но остаётся иррациональным. Существенного продвижения можно достичь, если ввести новую переменную:
или посторонний корень
Ответ:
Пример 3.
Решение. Видим, что к данному уравнению можно применить ранее указанный нами приём – «раскрытие скобок парами». Суммы чисел, стоящих в первой и четвёртой, во второй и третьей скобках, равны, т.е. 1+5=2+4. Перемножив эти пары скобок, приходим к уравнению:
Введём замену: , получим Решив квадратное уравнение находим, что или
Возвращаемся к исходной переменной и решаем совокупность уравнений:
В первом уравнении совокупности корней нет.
Перепишем второе уравнение:
Ответ:
Пример 4.
Решение. Заметим, что произведение чисел, стоящих в первой и четвёртой, во второй и третьей скобках, равны, т.е. Перемножим указанные пары скобок, запишем уравнение
Так как не есть решение данного уравнения, то, разделив обе части на , получим равносильное исходному уравнение
Делая замену переменных получаем квадратное уравнение
Обратная замена:
Решения первого уравнения этой совокупности есть
,
.
Второе уравнение этой совокупности решений не имеет.
Ответ:
Пример 5.
Решение. Обозначим через . Данное уравнение перепишем в виде . Поскольку не есть решение этого уравнения, то это уравнение равносильно уравнению
Сделаем обратную замену:
Ответ:
Пример 6.
Прежде, чем решить заданное уравнение, продемонстрирую алгоритм решения возвратного уравнения:
– разделить левую и правую части уравнения на . При этом не происходит потери решения, т. к. не является корнем исходного уравнения при
– группировкой привести полученное уравнение к виду
– ввести новую переменную , тогда выполнено т.е. в новых переменных рассматриваемое уравнение является квадратным
– решить его относительно , возвратиться к исходной переменной.
Решение. Исходя из алгоритма решения таких уравнений, разделим левую и правую части уравнения на , получим равносильное ему уравнение
.
Сгруппировав слагаемые, перепишем уравнение в виде
или в виде
Положив получим уравнение
Следовательно, исходное уравнение равносильно совокупности уравнений
Ответ:
Пример 7.
Решение. Обозначим
Таким образом, для и имеем симметричную систему:
Обозначим тогда
Таким образом,
Ответ:
Пример 8.
Решение. Можно в этом уравнении освободиться от знаменателя, проделать все необходимые преобразования и убедиться, что получившееся уравнение четвёртой степени является возвратным. Но лучше это сделать быстрее. Поделим числитель и знаменатель дроби, расположенной в левой части, на . Получим
Положим , тогда
Обратная замена:
или
корней нет.
Ответ:
Пример 9.
Решение. Так как не является корнем данного уравнения, то, разделив обе его части на , получим уравнение
Сделав замену неизвестной последнее уравнение перепишем в виде
Вернёмся к исходной переменной:
Ответ:
Пример 10.
Решение. Поскольку в левой части стоит сумма двух квадратов, естественно попытаться дополнить её до квадрата суммы или разности. Во втором случае получим
Введём замену: получим
Вернёмся к «старой» переменной:
Ответ:
Пример 11.
Решение. Обозначим тогда получим
Обратная замена:
Ответ:
Пример 12.
Решение. Так как не является решением уравнения, то, разделив числитель и знаменатель каждой дроби в левой части на , перепишем его в виде
Сделав замену переменных перепишем уравнение в виде
Решения этого уравнения есть
Обратная замена:
Ответ: .
Пример 13.
Решение. Обозначим через , т.е. сделаем замену переменных или Тогда первоначальное уравнение можно переписать в виде или, применяя формулу в виде
Поскольку корни квадратного уравнения есть , то решения биквадратного уравнения есть
Следовательно, решения исходного уравнения таковы
Ответ:
Пример 14.
Решение. Представляя это уравнение в виде вводим новое неизвестное Уравнение примет вид
Обратная замена:
Ответ:
Пример 15.
Решение. Умножив обе части уравнения на 12 и обозначив через , получим уравнение . Перепишем это уравнение в виде
(1)
Замена: .Перепишем уравнение в виде . Уравнение (1).
Обратная замена:
Ответ:
Пример 16.
Решение. Если раскрыть скобки и привести подобные, то получим уравнение пятой степени стандартного вида. Но если ввести новые переменные и , то получим уравнение , являющееся однородным уравнением степени 3 относительно и .
Однородные уравнения относительно и обладают тем свойством, что если разделить все члены уравнения на наивысшую степень одной из переменных, например , если не является корнем уравнения, то оно превращается в уравнение с одной переменной .
Решим уравнение . Разделим многочлен на , перейдём к равносильному уравнению
Ответ: .
Заключение
В последнее время алгебраические уравнения выше второй степени являются частью выпускных экзаменов за курс средней школы, они встречаются на вступительных экзаменах в ВУЗы, а также являются неотъемлемой частью ЕГЭ. Основные методы решения таких уравнений были отмечены в нашей работе. Также было раскрыто содержание основных понятий и утверждений, относящихся к теории решения уравнений. Определив самый распространённый метод решения уравнений, выявили его применение в стандартных и не стандартных ситуациях.
Исходя из третьей задачи курсовой работы, мы осуществили типизацию приёмов введения новых неизвестных при решении алгебраических уравнений. Выделили, что новая переменная может вводиться как явно, так и неявно.
В данной работе был составлен и решён комплект типовых задач, сводящихся к применению метода замены при решении уравнений.
Итак, нам удалось изучить возможности метода замены неизвестного при решении алгебраических уравнений и продемонстрировать их применение в стандартных и нестандартных ситуациях, т.е. цель курсовой работы достигнута.
Список литературы
1. Черкасов, О.Ю. Математика для поступающих в вузы / О.Ю. Черкасов, А.Г. Якушев. – Оформление «Московский лицей», 1996. – 348 с.
2. Фирстова, Н.И. Метод замены переменной при решении алгебраических уравнений / Н.И. Фирстова // Математика в школе – 2002. – №5. – С. 68 – 71.
3. Олехник, С.Н. Нестандартные приёмы решения уравнений и неравенств: Справочник / С.Н. Олехник, М.К. Потапов, П.И. Пасиченко. – М.: Изд-во МГУ, 1991. – 144 с.
4. Шарыгин, И.Ф. Решение задач: Учебное пособие для 10 кл. общеобразоват. учреждений / И.Ф. Шарыгин. – М.: Просвещение, 1994. – 252 с.
5. Егерев, В.К. Сборник задач по математике для поступающих в втузы: Учеб.пособие / В.К. Егерев, Б.А. Кордемский, В.В. Зайцев и др.; под ред. М.И. Сканави. – М.: Высшая школа, 1993. – 528 с.
6. Мордкович, А.Г. Алгебра и начала анализа. 10–11 кл.: учеб. для общеобразоват. учреждений / А.Г. Мордкович. – М.: Мнемозина, 2005.
7. Гусев, В.А. Справочник по математике / В.А. Гусев, А.Г. Мордкович. – М.: Просвещение, 1995. – 448 с.
8. Литвиненко, В.Н. Практикум по решению математических задач: Алгебра. Тригонометрия. Учеб. пособие для студентов пед. инст-ов по матем-ой специальности / В.Н. Литвиненко, А.Г. Мордкович. – М.: Просвещение, 1984. – 288 с.
9. Виленкин, Н.Я. Алгебра: Учеб.пособие для уч-ся 9 кл. с углублен. изучением матем-ки / Н.Я. Виленкин, Г.С. Сурвилло, А.С. Симонов, А.И. Кудрявцев; под ред. Н.Я. Виленкина. – М.: Просвещение, 2001. – 384 с.
10. Выгодский, М.Я. Справочник по элементарной математике / М.Я. Выгодский. – М.: Наука, 1986. – 320 с.
... математики тригонометрической подстановки и проверка эффективности разработанной методики преподавания. Этапы работы: 1. Разработка факультативного курса на тему: «Применение тригонометрической подстановки для решения алгебраических задач» с учащимися классов с углубленным изучением математики. 2. Проведение разработанного факультативного курса. 3. Проведение диагностирующей контрольной ...
дробно рассмотрено преобразование групп общих решений тригонометрических уравнений. В третьем разделе рассматриваются нестандартные тригонометрические уравнения, решения которых основано на функциональном подходе. В четвертом разделе рассматриваются тригонометрические неравенства. Подробно рассмотрены методы решения элементарных тригонометрических неравенств, как на единичной окружности, так и ...
... , придумать “свой метод", догадаться что-то прибавить и отнять, выделить полный квадрат, на что-то разделить и умножить и т.д. Если работа в поисках более рациональный способ решения систем линейных уравнений с двумя переменными - методом подстановки будет успешна, то практическая значимость будет очевидна. Список использованной литературы 1. Алгебра 8 класс. Н.Я. Виленкин. Москва, ...
... проведении исследования были решены следующие задачи: 1) Проанализированы действующие учебники алгебры и начала математического анализа для выявления представленной в них методики решения иррациональных уравнений и неравенств. Проведенный анализ позволяет сделать следующие выводы: ·в средней школе недостаточное внимание уделяется методам решения различных иррациональных уравнений, в основном ...
0 комментариев