Методика решения иррациональных уравнений и неравенств в школьном курсе математики

Методика решения иррациональных уравнений и неравенств в школьном курсе математики
Теоретические основы решения уравнений Наиболее важные приемы преобразования уравнений Методы решения иррациональных уравнений Метод сведения к эквивалентной системе уравнений и неравенств Метод введения новой переменной Метод сведения к эквивалентным системам рациональных уравнений Умножение обеих частей уравнения на функцию Использование ОДЗ Тождественные преобразования при решении иррациональных уравнений Теоретические основы решения иррациональных неравенств Умножение обеих частей неравенства на функцию Решение иррациональных неравенств с использованием свойств входящих в них функций Использование графиков функций Рациональность дробно-линейных иррациональностей Рационализация квадратичных иррациональностей посредством подстановок Эйлера Рационализация с помощью тригонометрических подстановок
98604
знака
5
таблиц
19
изображений

Содержание

Введение

§ 1. Анализ школьных учебников по алгебре и началам анализа

1.1. «Алгебра, 8», авт. А. Г. Мордкович

1.2. «Алгебра и начала анализа, 10-11», авт. А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницин и др..

1.3. «Алгебра и начала анализа, 10-11», авт. Ш. А. Алимов, Ю. М. Колягин, Ю. В. Сидоров и др..

1.4. «Алгебра и начала анализа, 10-11», авт. М. И. Башмаков.

1.5. «Алгебра и начала анализа, 10-11», авт. А. Г. Мордкович.

1.6. «Сборник задач по алгебре, 8-9», авт. М. Л. Галицкий, А. М. Гольдман, Л. И. Звавич.

1.7. «Алгебра и математический анализ, 11», авт. Н. Я. Виленкин, О.С. Ивашев-Мусатов, С. И. Шварцбурд.

§ 2. Методика изучения иррациональных уравнений

2.1. Теоретические основы решения уравнений

2.1.1. Основные понятия, относящиеся к уравнениям

2.1.2. Наиболее важные приемы преобразования уравнений

2.2. Методы решения иррациональных уравнений

2.2.1. Метод сведения к эквивалентной системе уравнений и неравенств

2.2.2. Метод уединения радикала

2.2.3. Метод введения новой переменной.

2.2.4. Метод сведения к эквивалентным системам рациональных уравнений

2.2.5. Умножение обеих частей уравнения на функцию.

2.2.6. Решение иррациональных уравнений с использованием свойств входящих в них функций

3. Тождественные преобразования при решении иррациональных уравнений

§ 3. Методика решения иррациональных неравенств

3.1. Теоретические основы решения иррациональных неравенств

3.2. Методы решения иррациональных неравенств

3.2.1. Метод сведения к эквивалентной системе или совокупности рациональных неравенств

3.2.2. Умножение обеих частей неравенства на функцию

3.2.3. Метод введения новой переменной

3.2.4. Решение иррациональных неравенств с использованием свойств входящих в них функций

§ 4. Опытное преподавание

Заключение

Список библиографии

Приложение А

Приложение Б

Приложение В


Введение

Материал, связанный с уравнениями и неравенствами, составляет значительную часть школьного курса математики. Одним из сложных разделов алгебры, изучаемых в школьной программе, являются иррациональные уравнения и неравенства, так как в школе им уделяют достаточно мало внимания.

Трудности при изучении данного вида уравнений и неравенств связаны со следующими их особенностями:

·  в большинстве случаев отсутствие четкого алгоритма решения иррациональных уравнений и неравенств;

·  при решении уравнений и неравенств данного вида приходится делать преобразования, приводящие к уравнениям (и неравенствам), не равносильным данному, вследствие чего чаще всего возникают ошибки, которые обычно связаны с потерей или приобретением посторонних корней в процессе решения.

Опыт показывает, что учащиеся в недостаточной степени овладевают умением решать иррациональные уравнения и неравенства, часто допускают ошибки при их решении. Однако задачи по теме «Иррациональные уравнения и неравенства» встречаются на вступительных экзаменах, и они довольно часто становятся «камнем преткновения».

Выше изложенное обусловило проблему исследования: обучение школьников решению иррациональных уравнений и неравенств, используя при этом основные методы решения иррациональных уравнений различных видов.

Объектом исследования является процесс обучения алгебре в 7-9 классах и алгебре и началам анализа в 10-11 классах.

Предметом исследования являются различные виды иррациональных уравнений и неравенств и методы их решения.

Целью работы является разработка методики изучения учащимися иррациональных уравнений и неравенств в школе.

Гипотеза исследования: освоение умения различать основные виды иррациональных уравнений и неравенств, умения применять необходимые приемы и методы их решения позволит учащимся решать иррациональные уравнения и неравенства на сознательной основе, выбирать наиболее рациональный способ решения, применять разные способы решения, в том числе те, которые не рассмотрены в школьных учебниках.

Для достижения поставленной цели и проверки гипотезы необходимо решить следующие задачи:

1.  проанализировать действующие учебники алгебры и начала математического анализа для выявления представленной в них методики решения иррациональных уравнений и неравенств;

2.  изучить стандарты образования по данной теме;

3.  изучить статьи и учебно-методическую литературу по данной теме;

4.  подобрать теоретический материал, связанный с равносильностью уравнений и неравенств, равносильностью преобразований, методами решения иррациональных уравнений и неравенств;

5.  рассмотреть основные методы и приемы решения различных иррациональных уравнений и неравенств;

6.  подобрать примеры решения иррациональных уравнений и неравенств для демонстрации излагаемой теории;

7.  разработать

8.  осуществить опытное преподавание.


§ 1. Анализ школьных учебников по алгебре и началам анализа

При изучении любой новой темы в основном курсе школы встает проблема изложения данной темы в школьных учебниках. Пропедевтикой изучения раздела иррациональных уравнений и неравенств в школе является введение понятие арифметического корня и, соответственно, рассмотрение его свойств.

Проанализируем в каких классах вводится данное понятие разными авторами учебников. Алимов Ш. А. в учебнике «Алгебра. 9класс» вводит понятие арифметического корня натуральной степени, а также свойства арифметического корня. Макарычев Н. Г. же разделяет понятия квадратного корня и корня -ой степени. В учебнике «Алгебра. 8 класс» классе вводится понятие арифметического квадратного корня и, соответственно, рассматриваются его свойства. В учебнике «Алгебра. 9 класс» вводятся понятия корня -ой степени, арифметического корня -ой степени и рассматриваются свойства арифметического корня -ой степени. Колмогоров А. Н. в учебнике «Алгебра. 10 класс» вводит понятия корня -ой степени, арифметического корня -ой степени и рассматривает свойства арифметического корня -ой степени перед изучением иррациональных уравнений. Мордкович А. Г. в учебнике «Алгебра. 8 класс» вводит понятие квадратного корня и его свойства. Кроме того, в этом же учебнике есть отдельный параграф, посвященный иррациональным уравнениям.

 

1.1. «Алгебра, 8», авт. А. Г. Мордкович [27], [28]

Данное учебное пособие состоит из двух частей: учебника и задачника.

В I части данного учебного пособия материал, посвященный иррациональным уравнениям, изложен в главе «Квадратные уравнения» в параграфе «Иррациональные уравнения». Параграф начинается с определения иррационального уравнения. Далее рассматривается решение иррационального уравнения  по определению квадратного корня из чего выводится метод решения иррациональных уравнений – метод возведения в квадрат обеих частей уравнения. Затем данный метод демонстрируется на примерах решения иррациональных уравнений вида , . Найденные корни проверяются подстановкой в исходное уравнение, при этом обращено внимание на те случаи, когда могут появиться посторонние корни. Автор подчеркивает, что проверка – обязательный этап решения иррационального уравнения. Далее приводится решение уравнения вида  методом введения новой переменной . Параграф завершается беседой о равносильных и неравносильных преобразованиях: дается определение равносильных уравнений, перечисляются и демонстрируются на примерах равносильные и неравносильные преобразования.

Система задач во II части данного учебного пособия достаточно разнообразна. В №№ 1011-1014 необходимо решить иррациональные уравнения вида , где  – линейное, квадратное или дробно-рациональное выражение. В № 1015 чтобы решить уравнение необходимо сначала уединить радикал. В № 1016 для решения предложены уравнения вида . №№ 10017-1020 –упражнения для решения методом замены иррациональных уравнений вида , , . В №№ 1023, 1024 необходимо выяснить, равносильны ли уравнения. В №№ 1021, 1022, 1025-1027 нужно решить уравнения вида , , где выражения , могут быть как линейными так и квадратными, а в №№ 1028-1031 – уравнения вида .

№№ 1032, 1033 – упражнения повышенной трудности для решения иррациональных уравнений методом замены.

Теперь проанализируем действующие учебники по алгебре и началам математического анализа для 10-11 классов, чтобы выяснить, как в них представлены методы решения иррациональных уравнений и неравенств.

 

1.2. «Алгебра и начала анализа, 10-11», авт. А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницин и др. [13].

Материал по данной теме изложен в IV главе «Показательная и логарифмическая функции», как пункт «Иррациональные уравнения» параграфа «Обобщение понятия степени». Автор рекомендует рассматривать решение иррациональных уравнений в теме «Уравнения, неравенства, системы», где систематизируются сведения об уравнениях.

В пункте «Иррациональные уравнения» дается понятие иррационального уравнения, приводится несколько примеров простейших иррациональных уравнений вида  , которые решаются с помощью возведения обеих частей уравнения в квадрат. Найденные корни проверяются подстановкой в исходное уравнение, при этом обращено внимание на те случаи, когда могут появиться посторонние корни. Показано, что кроме возведения в квадрат иррациональные уравнения удобно решать, используя равносильный переход от уравнения к системе, состоящей из уравнения и неравенства. Рассмотрен пример иррационального уравнения, содержащего корень третьей степени. Для того чтобы «избавиться от радикала», обе части такого уравнения возводятся в куб.

После пункта приведены упражнения для закрепления умений решать иррациональные уравнения. В №№417-420 предложены простейшие уравнения вида  , решить которые можно с помощью возведения обеих частей уравнения либо в квадрат, либо в куб, а также используя равносильные переходы. Такие задачи, по мнению авторов учебника необходимо уметь решать для получения удовлетворительной оценки. Задачи же в №№422-425 чуть сложнее. Здесь уравнения содержат корни выше третьей степени.

Иррациональным неравенствам в данном пункте внимания не уделено.

В заключительной главе учебника «Задачи на повторение» помещены практические упражнения для повторения курса. Здесь в параграфе «Уравнения, неравенства, системы уравнений и неравенств» иррациональным уравнениям и неравенствам посвящен пункт «Иррациональные уравнения и неравенства». То есть, не смотря на то, что в основной части учебника иррациональным неравенствам внимания не уделено, автор включает в задания для повторения такие неравенства.

 

1.3. «Алгебра и начала анализа, 10-11», авт. Ш. А. Алимов, Ю. М. Колягин, Ю. В. Сидоров и др. [1].

В данном учебнике нет материала, посвященного иррациональным уравнениям и неравенствам. Лишь в конце ученика помещены упражнения для итогового повторения курса алгебры. Здесь есть только один номер для решения простейших иррациональных уравнений (№801). Упражнений для решения иррациональных неравенств нет.

Это можно объяснить тем, что, по мнению автора, умение решать иррациональные неравенства не является обязательным для учащихся и соответствующая тема может быть предложена для изучения самостоятельно или на факультативных занятиях. [14] Поэтому в учебнике предложены задачи для внеклассной работы, где встречаются иррациональные уравнения (№№934, 947) и неравенства (№942).

 

1.4. «Алгебра и начала анализа, 10-11», авт. М. И. Башмаков [2].

В данном учебном пособии иррациональные уравнения и неравенства рассматриваются в заключительной VI главе «Уравнения и неравенства». Глава предназначена для систематизации и обобщения сведений об уравнениях, неравенствах и системах уравнений. В начале главы помещена вводная беседа, которая состоит из трех пунктов.

В пункте «Уравнение» вводятся такие понятия как уравнение, неизвестные, корень уравнения, подробно рассказывается, что значит решить уравнение с одним или двумя неизвестными, что означает найти корни уравнения, приведены некоторые рекомендации о форме записи ответа при решении уравнений с одним или двумя неизвестными.

В пункте «Равносильность» выясняется, когда одно уравнение является следствием другого, вводится понятие равносильных уравнений. Автор подробно останавливается на некоторых полезных преобразованиях уравнений:

1)  Перенос членов из одной части уравнения в другую с противоположным знаком.

2)  Переход к совокупности уравнений.

3)  Переход к системе уравнений.

Все равносильные переходы представлены в виде схем и рассмотрены на примерах.

В следующем пункте «Неравенство» приведены примеры верных и неверных числовых неравенств, основные правила преобразования неравенств, при этом используются знаки следствия и равносильности. Вводятся такие понятия как ОДЗ неравенства, решение неравенства, равносильные неравенства, выясняется, когда одно неравенство является следствием другого.

§1 «Уравнения с одним неизвестным» состоит из трех пунктов: «Общие приемы», «Примеры решения уравнений» и «Приближенные методы вычисления корней». В первом пункте перечислены стандартные уравнения, которые были изучены ранее. Основным шагом в решении уравнения является преобразование уравнения к одному из стандартных. Приведены некоторые наиболее употребительные приемы, общие для всех типов уравнений:

1)  Разложение на множители.

2)  Введение нового неизвестного.

3)  Графический метод.

Отметим, что во втором пункте на ряду со стандартными уравнениями рассматривается решения только одного простейшего иррационального уравнения с помощью равносильного перехода к системе.

В третьем пункте кратко рассказывается о таких методах приближенного вычисления корней как метод половинного деления, метод хорд и касательных.

§ 2 «Неравенства с одним неизвестным» состоит из двух пунктов: «Общие приемы» и «Примеры решения неравенств». В первом пункте демонстрируется два приема решения неравенств: разложение на множители и метод замены неизвестного.

Во втором пункте на примерах показана техника решения неравенств с помощью переходов, сохраняющих равносильность. Отметим, что на ряду со стандартными неравенствами рассматривается решение только одного простейшего иррационального неравенства.

В конце главы помещены задания для решения иррациональных уравнений №17, для решения иррациональных неравенств – №21, в котором есть задание со звездочкой, то есть относящееся к разделу «трудные задачи».

Иррациональным уравнениям и неравенствам в главе уделено недостаточно внимания: приведены решения с помощью переходов, сохраняющих равносильность одного простейшего иррационального уравнения и одного неравенства.

Цель данной главы – обобщить имеющиеся у учащихся знаний об уравнениях, неравенствах и системах уравнений, поэтому здесь подробно не рассматриваются конкретные виды уравнений, а лишь повторяются сведения об изученных видах уравнений и методах их решения. [14]

1.5. «Алгебра и начала анализа, 10-11», авт. А. Г. Мордкович [10], [11].

Данное учебное пособие состоит из двух частей: учебника и задачника.

В I части данного учебного пособия материал, касающийся иррациональных уравнений и неравенств, изучается в последней VIII главе «Уравнения и неравенства. Системы уравнений и неравенств», завершающей изучение школьного курса алгебры и начал математического анализа. Здесь уравнения и неравенства рассматриваются с самых общих позиций. Это, с одной стороны, своеобразное подведение итогов и, с другой стороны, некоторое расширение и углубление знаний.

В первых трех параграфах этой главы подведены итоги изучения в школе уравнений, неравенств. Использованы следующие термины:

¨  равносильность уравнений, равносильность неравенств;

¨  следствие уравнения, следствие неравенства;

¨  равносильное преобразование уравнения, неравенства;

¨  посторонние корни (для уравнений);

¨  проверка корней (для уравнений).

Сформулированы теоремы:

¨  о равносильности уравнений;

¨  о равносильности неравенств.

Даны ответы на четыре главных вопроса, связанных с решением уравнений:

1)  как узнать, является ли переход от одного уравнения к другому равносильным преобразованием;

2)  какие преобразования переводят данное уравнение в уравнение-следствие;

3)  как сделать проверку, если она сопряжена со значительными трудностями в вычислениях;

4)  в каких случаях при переходе от одного уравнения к другому может произойти потеря корней и как этого не допустить?

Перечислены возможные причины расширения области определения уравнения, одна из которых – освобождение в процессе решения уравнения от знаков корней четной степени; указаны причины, по которым может произойти потеря корней при решении уравнений.

Выделены четыре общих метода решения уравнений:

1)  замена уравнения h(f(x))=h(g(x)) уравнением f(x)=g(x);

2)  метод разложения на множители;

3)  метод введения новых переменных;

4)  функционально-графический метод.

Что касается иррациональных уравнений, то им в данном учебном пособии уделено достаточно большое внимание.

На примере иррационального уравнения показано как решение любого уравнения осуществляется в три этапа: технический, анализ решения, проверка.

Также на примере иррационального уравнения показано, как сделать проверку, если проверка корней с помощью их подстановки в исходное уравнение сопряжена со значительными вычислительными трудностями.

Метод замены уравнения h(f(x))=h(g(x)) уравнением f(x)=g(x) применятся при решении иррациональных уравнений для перехода от уравнения  к уравнению .

Метод введения новой переменной также разобран и на примере решения иррационального уравнения.

Отдельный пункт посвящен иррациональным неравенствам. Здесь с теоретическим обоснованием рассматривается решение неравенств вида , . В первом случае иррациональное неравенство заменяется равносильной системой неравенств  во втором – равносильной совокупностью систем неравенств

Система задач во II части данного учебного пособия изложена в той же последовательности, что и соответствующий материал в I части. В § 55 «Равносильность уравнений» изложены различные типы заданий на равносильность и следствие уравнений, в том числе и иррациональных. В § 56 «Общие методы решения уравнений» помещены задания для использования четырех методов, изложенных в I части данного учебного пособия, для решения уравнений. Все задачи в соответствии с ними разбиты на четыре блока, в каждом из которых встречаются иррациональные уравнения. В § 57 «Решение неравенств с одной переменной» изложены различные типы заданий на равносильность и следствие неравенств, в том числе и иррациональных.

В № 1673 нужно решить простейшие иррациональные уравнения. №№1674, 1675, 1712-1719 – упражнения выше среднего уровня для решения иррациональных уравнений, №№1790, 1791 – неравенств. № 1792 – упражнение повышенной трудности для решения иррациональных неравенств.

Много заданий, в которых требуется решить «смешанное» уравнение или неравенство, то есть логарифмическое, показательное или тригонометрическое уравнение или неравенство, в которое входят и иррациональные выражения. Среди этих заданий есть задания как базового, так и повышенного уровня.

В I части учебника много внимание уделено равносильности уравнений и неравенств, достаточно строго рассмотрены общие методы решения уравнений, с оговоркой о потере корней и приобретении посторонних. II часть учебника отличается обилием и разнообразием задач. Достаточно много задач на равносильность и следствие уравнений и неравенств.

 

1.6. «Сборник задач по алгебре, 8-9», авт. М. Л. Галицкий, А. М. Гольдман, Л. И. Звавич [5].

Данная книга представляет собой сборник задач по курсу алгебры, предназначенный для учащихся 8-9 классов с углубленным изучением математики.

В начале параграфа «Степень с рациональным показателем» помещен справочный материал теоретического характера, посвященный иррациональным уравнениям и неравенствам. Описаны такие пути решения иррациональных уравнений, как:

·  возведение обеих частей уравнения в натуральную степень с последующей проверкой найденных корней;

·  переход к равносильным системам, в которых учитывается область определения уравнения и требование того, что бы были неотрицательными обе части уравнения, возводимые в четную степень.

При решении иррациональных неравенств либо используется метод интервалов, либо с помощью равносильных преобразований заменяется данное иррациональное неравенство системой (или совокупностью систем) рациональных неравенств.

В параграфе рассмотрено три способа решения иррационального уравнения вида :

1)  переход к равносильной системе;

2)  введение новой переменной;

3)  использование свойства монотонности функций.

Среди упражнений, помещенных в данном параграфе, есть упражнения для закрепления умений и навыков решать иррациональные уравнения и неравенства. В №№115-117 необходимо доказать, что уравнение не имеет решения, в №№118-119 – ответить на вопрос: равносильны ли уравнения. №№120-144 предлагаются для решения иррациональных уравнений, №№145-155 – для решения неравенств описанными выше способами.

 

1.7. «Алгебра и математический анализ, 11», авт. Н. Я. Виленкин, О.С. Ивашев-Мусатов, С. И. Шварцбурд [4].

Данное учебное пособие представляет собой продолжение книги «Алгебра и начала анализа» для 10 класса и предназначено как для общеобразовательной школы, так и классов и школ с углубленным изучением курса математики.

Иррациональные уравнения и неравенства изучаются в параграфе «Степенная функция. Иррациональные выражения, уравнения и неравенства» VIII главы «Показательная, логарифмическая и степенные функции».

Пункт «Иррациональные уравнения» начинается с определения иррационального уравнения и примеров таких уравнений. Далее сформулирована и доказана теорема о равносильных уравнениях, на которой основано решение иррациональных уравнений. Из теоремы следует, что если в ходе решения иррационального уравнения приходилось возводить обе его части в степень с четным показателем, то могут появиться посторонние корни. Поэтому, чтобы не было необходимости подставлять найденные корни в данное уравнение, сформулировано еще два утверждения о равносильном переходе от уравнений вида  и  к системам, состоящим из уравнения и неравенства. Далее на примерах решения иррациональных уравнений демонстрируются данные равносильные переходы. Также автор рекомендует перед возведением обеих частей уравнения в некоторую степень «уединить радикал», то есть представить уравнение в виде . Далее данный метод применяется для решения иррациональных уравнений

После данного пункта помещены упражнения для закрепления умений решать иррациональные уравнения описанными выше методами – №216. В №215 необходимо доказать, что данные иррациональные уравнения не имеют решений.

В следующем пункте «Иррациональные неравенства» сформулированы приемы решения иррациональных неравенств вида  и  с помощью равносильного перехода к системе неравенств в первом случае и совокупности систем неравенств – во втором. Рассматривается решение иррационального неравенства вида  с помощью равносильного перехода к неравенству . Решение каждого из видов неравенств демонстрируется на примерах.

После данного пункта помещены упражнения (№217) для закрепления умения решать иррациональные неравенства с помощью равносильных переходов, описанных выше.

Все утверждения, сформулированные в данном учебном пособии, изложены со строгим обоснованием. Описан полезный метод при решении иррациональных уравнений – метод «уединения радикала». Не смотря на то, что учебник не отличается обилием упражнений, предлагаемые задания разнообразны, различной степени сложности

Проведенный анализ позволяет сделать следующие выводы:

1)  В учебнике [1] материала по методам решения иррациональных уравнений нет. В учебниках [13] и [4] материала по теории способов решения иррациональных уравнений достаточно. В большом объеме теория по общим методам решения рассмотрена учебнике [2] и [10].

2)  В каждом учебнике рассмотрены два основных способа решения: возведение обеих частей уравнения в степень, с последующей подстановкой полученных корней в исходное уравнение, а также решение уравнений с помощью равносильных переходов к системе, состоящей из уравнения и неравенства. В учебниках [2] и [10] рассмотрены такие общие методы решения уравнений как метод разложения на множители, метод введения новых переменных, функционально-графический метод; некоторые из них продемонстрированы на примерах решения иррационального уравнения.

3)  В учебниках [1] и [13] не рассмотрено решение иррациональных неравенств. В учебнике [2] материала по решению иррациональных неравенств не достаточно. В учебниках [4] и [10] подробно и с теоретическим обоснованием рассмотрено решение иррациональных неравенств вида ,  с помощью равносильного перехода к системе (или совокупности систем). Только в учебнике [4] рассматривается решение иррационального неравенства вида .

4)  Наиболее большой объем упражнений для решения иррациональных уравнений и неравенств представлен в учебниках [11] и [5]. В учебнике [4] упражнений немного, но они разнообразны.


§ 2. Методика изучения иррациональных уравнений

 


Информация о работе «Методика решения иррациональных уравнений и неравенств в школьном курсе математики»
Раздел: Педагогика
Количество знаков с пробелами: 98604
Количество таблиц: 5
Количество изображений: 19

Похожие работы

Скачать
37778
0
2

... на основе знания связи между результатом и компонентами арифметических действий (т.е. знания способов нахождения неизвестных компонентов). Эти требования программы определяют методику работы над уравнениями. 2. Методика изучения неравенств в старших классах 2.1 Содержание и роль линии уравнений и неравенств в современном школьном курсе математики Ввиду важности и обширности материала, ...

Скачать
123013
25
0

... на качественно новую ступень овладения содержанием школьной математики. Глава II. Методико - педагогические основы использования самостоятельной работы, как средство обучения решению уравнений в 5 - 9 классах.   § 1. Организация самостоятельной работы при обучения решению уравнений в 5 - 9 классах.   При традиционном способе преподавания учитель часто ставит ученика в положение объекта ...

Скачать
46858
6
0

... , можно сделать вывод о недостаточном освещении изучаемого вопроса в современной методической литературе. Объект исследования работы: процесс обучения математике. Предмет: формирование умения решения квадратных уравнений у учащихся 8-го класса. Контингент: учащиеся 8-го класса. Глава 1. Теоретические аспекты обучению решения уравнений в 8 классе   1.1.  Из истории возникновения квадратных ...

Скачать
20346
1
2

... числового аргумента, поэтому при таком подходе наблюдается определённая избыточность в формировании функции как обобщённого понятия. 2. Основные направления введения понятия функции в школьном курсе математики В современном школьном курсе математики ведущим подходом считается генетический с добавлением элементов логического. Формирование понятий и представлений, методов и приёмов в составе ...

0 комментариев


Наверх