Министерство образования и науки Республики Казахстан
Алматинская область Карасайский район
Секция: математическая
ТЕМА: Поиски более рационального способа решения систем линейных уравнений с двумя переменными - методом подстановки
Школа им. Ш. Кудайбердыулы
Ученик 8 класса
Басов Ярослав Андреевич
Научный Руководитель:
Нигматуллина Ирина Ильдаровна
Научный консультант:
Поселок Нурлытау 2009 г.
План
Введение
Глава 1. Цель исследования
Глава 2. Методика исследования данной работы
Глава 3. Результаты исследования и их практическая значимость
Список использованной литературы
Приложение
Основная цель при решении систем линейных уравнений - решить систему уравнений, то есть найти все ее решения или доказать, что решений нет. Для решения системы уравнений с двумя переменными используются:
1-графический способ,
2. способ подстановки,
3 - способ сложения.
Практическое применение этих способов - это решение задач, по алгебре, физике, химии, геометрии.
1 - Кроме этого умение определить без построения графиков число решений системы линейных уравнений с числовыми коэффициентами. Основная цель, которая ставится при изучении темы - понять, то, что вопрос о числе решений системы двух линейных уравнений (если исключить выраженный случай а=0, в=0 для линейного уравнения ах + ву = с) сводиться к определению числа общих точек прямых, являющимися графиками уравнений системы.
Известно, что графиком линейного уравнения является прямая.
Рассмотрим три случая расположения прямой.
Случай 1.
Прямые, являющиеся графиком уравнения, входящих в эту систему, пересекаются. Решим систему уравнений:
Уравнениями у = - 1, Iх + 12 и у = - 6х + 18 задаются линейные функции. Угловые коэффициенты прямых, являющихся графиками этих функций, различны. Значит, эти прямые пересекаются, и система имеет единственное решение. Прировняв правые части уравнений, найдем точку пересечения Данная система имеет единственное решение: пара чисел.
Случай 2.
Прямые, являющиеся графиками уравнений системы, параллельны. Решим систему уравнений:
Прямые, являющиеся графиками линейных функций у = - О,4х+О,15 и
У = - О,4х+3,2, параллельны, так как их угловые коэффициенты одинаковы, а точки пересечения с осью у различны. Отсюда следует, что данная система уравнений не имеет решений
Случай 3.
Прямые, являющиеся графиками уравнений системы, совпадают.
Очевидно, что графики уравнений совпадают. Это означает, что любая пара чисел (х; у), в которой х - произвольное число, а у = - 2,5х - 9, является решением системы. Система имеет бесконечно много решений.
Главная проблема при решении системы линейных уравнений графическим способом у учащихся это?
не умения, выражать одну переменную через другую.
не правильное построение системы координат (различный единичный отрезок на осях ординат и абсцисс).
Рассмотрим способ решения систем линейных уравнений с двумя переменными, называемый способом подстановки. Начнем с задачи.
Ученик задумал два числа. Первое число на 7 больше второго. Если от утроенного первого числа вычесть удвоенное второе число, то получится 27 Какие числа задумал ученик?
Решение: Пусть х - первое число, у - второе число. По условию задачи составим систему уравнений.
В первом уравнении выразим х через у: х = у + 7.
Подставив во второе уравнение вместо переменной х выражение х = у + 7, получим систему
Второе уравнение системы представляет собой уравнение с одной переменной.
Решим его:
Зу+2I-2у=27; у=6.
Подставив в первое уравнение системы вместо переменной у ее значение, равное 6, получим:
х=6+ 7;
х= 13.
Пара чисел (13;
6) является решением системы. Ответ: (13;
6).
Главная проблема при решении системы линейных уравнений способом подстановки у учащихся это?
не умения, выражать одну переменную через другую.
не умение, подставить уже полученную переменную (не видят)
Рассмотрим еще один способ решения систем линейных уравнений - способ сложения. При решении систем этим способом, как и при решении способом подстановки, мы переходим от данной системы к другой, равносильной ей системе, в которой одно из уравнений содержит только одну переменную.
Решим систему уравнений:
В уравнениях этой системы коэффициенты при у являются противоположными числами. Сложив почтенно левые и правые части уравнений, получим уравнение с одной переменной:
3х = 33.
Заменим одно из уравнений системы (1), например первое, уравнением 3х=33. Получим систему:
Система (2) равносильна системе (1). Решим систему (2). Из уравнения 3х=33 находим, что х=11. Подставив это значение х в уравнение х-3у=38, получим уравнение с переменной у:
Решим это уравнение:
II-Зу=38.
3у=27,у= - -9.
Пара (11; - 9) - решение системы (2), а значит, и данной системы (1).
Воспользовавшись тем, что в уравнениях системы (1) коэффициенты при у являются противоположными числами, мы свели ее решение к решению равносильной системы (2), в которой одно из уравнений содержит только одну переменную.
Геометрически равносильность систем (1) и (2) означает, что графики уравнений 2х+3у= - 5 и х-3у=38 пересекаются.
Главная проблема при решении системы линейных уравнений способом подстановки у учащихся это?
1) не умение, подставить уже полученную переменную (не видят)
Проанализировав основные проблемы решение линейных систем уравнений с двумя переменными, можно сделать вывод:
Главная проблема при решении систем линейных уравнений различными способами у учащихся это?
не умения, выражать одну переменную через другую. (в трех случаях)
не умение, подставить уже полученную переменную (в двух случаях)
И обе эти проблемы встречаются при решении линейных систем уравнений способом подстановки.
Почему я решил проводить исследование в этой области?
Проанализировав основные проблемы решение линейных систем уравнений с двумя переменными, можно сделать вывод.
Главная проблема при решении систем линейных уравнений различными способами у учащихся это?
не умения, выражать одну переменную через другую. (в трех случаях)
не умение, подставить уже полученную переменную (в двух случаях)
И обе эти проблемы встречаются при решении линейных систем уравнений способом подстановки.
Кроме этого, решение задач составлением систем уравнений, по физике, алгебре, геометрии и химии для таких учащихся останутся недоступными. Поэтому я решил, заняться, поиском более рационального способа решения систем линейных уравнений с двумя переменными - методом подстановки.
Я считаю, что моя работа, в этом направлении очень актуальна.
... ;[0; 1), тогда x – x +1 = 1; 1 = 1 Þ x — любое число из [0; 1). В) x Î[1; ¥), тогда x + x – 1 = 1; 2x = 2; x = 1 Î[1; ¥). Ответ: x Î[0; 1]. Основные методы решения рациональных уравнений. 1) Простейшие: решаются путём обычных упрощений — приведение к общему знаменателю, приведение подобных членов и так далее. Квадратные уравнения ax2 + bx + c = 0 решаются по ...
... на качественно новую ступень овладения содержанием школьной математики. Глава II. Методико - педагогические основы использования самостоятельной работы, как средство обучения решению уравнений в 5 - 9 классах. § 1. Организация самостоятельной работы при обучения решению уравнений в 5 - 9 классах. При традиционном способе преподавания учитель часто ставит ученика в положение объекта ...
... точек координатной оси. Занятие № 4. Тема: Аналитический метод. Метод «ветвлений». Цель занятия: познакомить учеников с основным методом решения уравнений, содержащих параметр. Литература для учителя: см. [1] , [5], [6], [7], [14] Литература для ученика: см. [3] Краткое содержание: рассмотрение различных значений, принимаемых параметром. Упрощение уравнения и приведение уравнения к произведению ...
... Келли), исследования экспериментального изучения относительно частных процессов и функций мыслительной деятельности (Ж. Пиаже), создания концепций когнитивной структуры личности, связанной с развитием интеллекта в процессе обучения (Дж. Брунер, Д. Озбел) появляется критическая информация в связи с отсутствием концептуального единства многочисленных теорий. В последнее время мы можем обнаружить ...
0 комментариев