1.2 Метод Эйлера

Метод Эйлера для решения начальной задачи (2.1.1) был описан Эйлером в 1768 году. Этот метод весьма прост. Его глобальная погрешность имеет вид , где  – постоянная, зависящая от задачи, и  – максимальная длина шага. Если желательно, скажем, получить 6 точных десятичных знаков, то требуется, следовательно, порядка миллиона шагов, что не слишком удовлетворительно. С другой стороны, еще со времен Ньютона известно, что можно найти гораздо более точные методы, если  не зависит от , то есть если мы имеем задачу (2.1.1), решаемую квадратурой

. (2.2.1)

В качестве примера можно рассмотреть первую квадратурную формулу Гаусса, также называемую «правилом средней точки»:

 (2.2.2)

где  и  – граничные точки подинтервалов, на которые разбит интервал интегрирования. Известно, что оценка глобальной погрешности этой формулы  имеет вид . Таким образом, если желаемая точность составляет 6 десятичных знаков, ее обычно можно получить приблизительно за 1000 шагов, то есть этот метод в тысячу раз быстрее. Поэтому Рунге поставил следующий вопрос: нельзя ли распространить этот метод на исходную задачу Коши? Первый шаг длины  должен иметь вид

. (2.2.3)


Но какое значение взять для ? За неимение лучшего естественно использовать один малый шаг метода Эйлера длины . Тогда из предыдущей формулы получим:

 (2.2.4)

Решающим обстоятельством здесь является умножение  в третьем выражении на , в результате чего влияние погрешности становится менее существенным. Точнее, вычислим для  разложение Тейлора по степеням :

 (2.2.5)

Его можно сравнить с рядом Тейлора для точного решения, который получается из того, что  путем повторного дифференцирования с заменой  на  каждый раз, когда оно появляется:

 (2.2.6)


Вычитая из последнего равенства предыдущее, получим для погрешности первого шага выражение

 (2.2.7)

Таким образом, если все частные производные  второго порядка ограничены, то

.

Чтобы получить приближенное значение решения исходной задачи в конечной точке , будем применять формулы (2.2.4) последовательно к интервалам . Приведенные выше формулы являются усовершенствованным методом Эйлера. Для вычислений с высокой точностью, однако, следует пользоваться другими методами, одним из которых как раз является метод Рунге-Кутты.

1.3 Общая формулировка методов Рунге-Кутты

Рунге и Хойн построили новые методы, включив в указанные формулы один или два добавочных шага по Эйлеру. Но именно Кутта сформулировал общую схему того, что теперь называется методом Рунге-Кутты.

Пусть  – целое положительное число (число стадий, этапов) и  – вещественные коэффициенты. Тогда метод


 (2.3.1)

называется -стадийным явным методом Рунге-Кутты для исходной задачи Коши (2.1.1)

Обычно коэффициенты  удовлетворяют условиям

. (2.3.2)

Эти условия были приняты Куттом без каких-либо комментариев. Смысл их заключается в том, что все точки, в которых вычисляется , являются приближениями первого порядка к решению. Эти условия сильно упрощают вывод условий, определяющих порядок аппроксимации для методов высокого порядка. Однако для методов низких порядков эти предположения необходимыми не являются.

Метод Рунге-Кутты имеет порядок , если для достаточно гладких задач (2.1.1) справедливо неравенство

, (2.3.3)

то есть ряды Тейлора для точного решения  и для  совпадают до члена  включительно.

После статьи Бутчера вошло в обычай символически представлять метод (2.3.1) по средствам следующей таблицы:



Информация о работе «Метод Рунге-Кутты четвертого порядка с автоматическим выбором шага интегрирования решения задачи Коши»
Раздел: Математика
Количество знаков с пробелами: 39910
Количество таблиц: 10
Количество изображений: 20

Похожие работы

Скачать
38479
9
12

... 1 0.0001 Графики решения приведены на Рисунке 8, а численные значения в таблице 8. Рисунок показывает, что выходное напряжение автогенератора (кривая 1) достаточно близко к синусоидальному, чего нельзя сказать о входном напряжении усилителя (кривая 2). Таблица 8 АРГУМЕНТ ФУНКЦИЯ 1 ФУНКЦИЯ 2 ФУНКЦИЯ 3 ФУНКЦИЯ 4 ФУНКЦИЯ 5 370.0 ...

Скачать
53746
0
28

... с единицами измерений физических величин в системе MathCAD? 11.    Подробно охарактеризуйте текстовые, графические и математические блоки. Лекция №2. Задачи линейной алгебры и решение дифференциальных уравнений в среде MathCAD В задачах линейной алгебры практически всегда возникает необходимость выполнять различные операции с матрицами. Панель операторов с матрицами находится на панели Math. ...

Скачать
34983
6
8

... методы (метод Гаусса). Однако, при решении на ЭВМ систем высокого порядка (более 200 уравнений в системе), предпочтительными являются итерационные методы. Реализация решения задачи анализа линейного стационарного объекта может быть осуществлена с помощью средств матричной алгебры пакета MathCAD. 1.2. Последовательность выполнения работы   1. Согласно номеру варианта (две последние цифры ...

0 комментариев


Наверх