1. Записывают функцию в виде y=f(х).
2. Вычисляют Dy – приращение функции: Dу=f(x+Dx) – f(x).
3. Составляют отношение
4. Представляют, что Dx стремится к нулю, и переходят к пределу = y'(х0).
5. Вычисляют производную в точке х0: y'(х)= y'(х0).
Операция вычисления производной называется дифференцированием.
Примеры дифференцирования:
1.
Dy=a(x+Dx)2 – ax2=2axDx+aDx2;
=2ax+Dx; =2ax, Þ (ах2)'=2ax.
2.
;
=;
=3x2, Þ (x3)'=3x2.
3.
;
= –, Þ
1.2 Дифференциал функции
Дифференциалом функции f(х) в точке х0 называется линейная функция приращения вида
Дифференциал функции y=f(х) обозначается dy или df(x0). Главное назначение дифференциала состоит в том, чтобы заменить приращение на линейную функцию от , совершив при этом, по возможности, меньшую ошибку.
Наличие конечной производной даёт возможность представить приращение функции в виде
где при . Из этого следует, что ошибка в приближённом равенстве (равная ) является бесконечно малой более высокого порядка, чем , когда . Это часто используют при приближённых вычислениях.
1.3 Применение производной к исследованию функций
Очень часто при решении экономических задач возникает необходимость принять решение на основе исследования и анализа функций спроса, предложения, издержек, прибыли и т.д. При этом удобно пользоваться дифференциальным исчислением.
1. Возрастание/убывание функции
Если дифференцируемая функция y=f(х), х возрастает на интервале то f'(x0) для любого х0
Если дифференцируемая функция y=f(х), х убывает на интервале то f'(x0) для любого х0
... ). Мы придерживаемся точки зрения, согласно которой региональная экономика является ветвью общей экономической теории, относящейся к разделу «Мезоэкономика», то есть рассматриваем региональную экономику как часть крупную подсистему национальной экономики (Макроэкономики). Курс методологически опирается на основы экономической теории и органически связан с конкретными экономическими дисциплинами, ...
... их изменения, аналитическим выражением которых являются производные. Такие уравнения, содержащие производные, называются дифференциальными. В своей же работе я хочу подробнее остановится на приложениях производной. 1. Понятие производной При решении различных задач геометрии, механики, физики и других отраслей знания возникла необходимость с помощью одного и того же аналитического процесса из ...
... , дополнительная отдача будет постоянной. Рента с лучших земель останется на том же уровне R1. 20. Макроэкономика и ее цели. Основные субъекты макроэкономики Макроэкономика – часть экономической теории, изучающая закономерности функционирования и тенденции развития экономики страны в целом. Объект исследования макроэкономики – целостная национальная экономика. Цели макроэкономики: · ...
... бюджета. Исходным теоретическим основанием финансовой политики выступает фискальная политика, как совокупность мер по сознательному манипулированию налогами и государственными расходами. В современной экономической теории существуют различные точки зрения на методы проведения фискальной политики государства. Сторонники кейнсианского направления традиционно ориентируются на создание ...
0 комментариев