1.6.2 Вільна конвекція в необмеженому просторі
Значення αK в першу чергу залежить від стану граничного шару рідини. Для тіл з одним визначальним розміром L (вертикальні плити, стінки, довгі провідники) широкого застосування набула емпірична формула:
,
деPr- число Прантля, ,
;
Gr- число Грасгофа, ;
Nu- число Нуссельта, ;
c, n – емпіричні коефіцієнти;
m – індекс, який означає, що фізичні параметри рідини беруться для середньої температури
. (1.15)
В залежності від значення комплексного критерію розрізняють чотири типових ситуації, які характеризуються певним режимом руху рідини та значеннями С і n (таблиця 1.1).
Таблиця. 1.1.
Режими руху рідини
№ | Значення | c | n | Режим руху рідини |
1 | | 0,5 | 0 | Плівковий |
2 | | 1,18 | 1/8 | Перехідний до ламінарного |
3 | | 0,54 | 1/4 | Ламінарний |
4 | | 0,135 | 1/3 | Турбулентний |
Формула (1.15) універсальна в тому розумінні, що стосується різних середовищ (повітря, водень, вуглекислий газ, мастила тощо). Нас ця формула цікавить з точки зору застосування до електронних схем, тобто коли середовищем є повітря.
Форма поверхонь тіл зводиться до трьох базових поверхонь: площина, сфера, циліндр.
Ці поверхні характеризуються одним визначальним розміром L та орієнтацією поверхні в середовищі (повітрі). Орієнтація характеризується значенням параметра N. Основні випадки орієнтації поверхні наведемо у вигляді таблиці 1.2.
Чотири характерні режими конвективної тепловіддачі пов’язують зі значенням емпіричного індексу n і називають законом ступеня n. Розглянемо кожний з чотирьох законів та дамо відповідні формули визначення конвективної тепловіддачі.
Таблиця 1.2.
Орієнтація поверхні в середовищі
№ | Поверхня та орієнтація | L | N |
1 | Горизонтальний циліндр | d – діаметр | 1,0 |
2 | Вертикальна пластина чи циліндр | H – висота | 1,0 |
3 |
б) верхня площина | Lmin - мінімальний розмір площини | 0,7 1,3 |
Закон ступеня нуль. Біля поверхні тіла утворюється майже нерухома плівка нагрітого повітря. Теплообмін відбувається практично за рахунок теплопровідності. Такий режим теплообміну має місце при незначних перепадах температур (θ=Т-ТС) для тіл з малими розмірами та плавними формами.
Закон ступеня 1/8. Такий закон має місце при відносно невеликих перепадах температур для тіл з малими розмірами та різкими формами. Наприклад, при охолодженні тонких довгих стержнів. Режим руху теплоносія - перехідний до ламінарного. Інтенсивність теплообміну незначна. Має місце формула:
, (1.16)
де d - діаметр стержня;
. (1.17)
Закон ступеня 1/4. При цьому законі на поверхні тіла відбувається ламінарний рух. Здійснюється значний конвективний теплообмін. Така картина спостерігається біля ребер радіаторів, на поверхні плоских та циліндричних апаратів середнього розміру. Має місце формула:
, (1.18)
де L - визначальний розмір, м;
N - параметр, що визначає орієнтацію тіла;
. (1.19)
Закон ступеня 1/3. При цьому законі на поверхні тіла відбувається інтенсивний турбулентний рух теплоносія і відбувається інтенсивний теплообмін. Коефіцієнт конвективної тепловіддачі визначається за формулою
, (1.20)
. (1.21)
Для визначення коефіцієнта а3 можна скористатись спеціальною таблицею.
Найбільш часто зустрічаються саме закони ступеня 1/4 та 1/3. Тому особливого значення для плоских і циліндричних поверхонь набуває спосіб швидкого визначення ступеня n:
якщо
, то n=1/4;
якщо , то n=1/3, (1.22)
де визначальний розмір L береться в м.
Приклад 1.1. Корпус електричного приладу (рис.1.7) має розмір паралелепіпеда L1 = 0,3 м, L2 =0,4 м, Н = 0,2 м, . Знайти теплову потужність корпусу при конвективній тепловіддачі.
![]() | |||
![]() | |||
а) б)
Рис.1.7. Корпус приладу та його теплова модель
Через грані паралелепіпеда паралельно протікають шість теплових потоків. Оскільки бокові поверхні мають однаковий визначальний розмір і розташовані вертикально, то їх можна об’єднати в одну поверхню. Теплове коло (рис.1.7 б) є паралельним з’єднанням трьох теплових опорів: Rбок, Rкр, Rдно.
Конвективна провідність системи визначається як сума трьох провідностей:
,
де
Розглянемо дно і кришку:
;
;
, тому n=1/4.
Оскільки визначальні розміри бокових граней менші визначального розміру дна і кришки, то теплообмін по всіх гранях має ступінь n=1/4. Отже маємо такі дані для визначення коефіцієнтів конвективної тепловіддачі бокових граней, кришки та дна відповідно:
.
Згідно формули (1.18) та формули (1.19)
;
;
.
Отже:
.
Теплова потужність при конвективній тепловіддачі
.
... до студентів інформацію зрозуміло та цікаво. 7.3. 20.03.09 Робота з навчально-методичною літературою. Відвідування бібліотеки. Підготовка до практичних робіт з дисципліни "Основи конструювання ОТ" 7.4. 24.03.09 Обговорення з керівником асистентської практики. 7.5 25.03.09 Участь в методичному семінарі кафедри. Ознайомились з науково-дослідною роботою ...
... "ВНІЇЕМ-3", а також надшвидкодіюча БЕСМ-6 з продуктивністю 1 млн операцій в секунду. 2.3 Третє покоління комп'ютерів Поява інтегрованих схем започаткувала новий етап розвитку обчислювальної техніки - народження машин третього покоління. Інтегрована схема, яку також називають кристалом, являє собою мініатюрну електронну схему, витравлену на поверхні кремнієвого кристала площею приблизно 10 ...
... рахунку всі науково-технічні поняття є відображенням технічного об'єкта. Поняття “технічний об'єкт” і “об'єкт технічної науки” виконують різну методологічну функцію у філософському аналізі техніки і науково-технічного пізнання. У понятті “технічний об'єкт” фіксується реально змінювана в практиці сторона об'єктивного світу. Технічний об'єкт відображається у філософських, суспільних, природних і ...
... ів з професій (Типові навчальні плани і програми, кваліфікаційні характеристики і т. ін.), що входять до цього переліку, практично робить неможливим перехід на підготовку робітничих кадрів згідно з означеним документом, оновлення змісту професійно-технічної освіти. Сьогодні, на нашу думку, першочерговим завданням у розв'язанні проблеми розробки і впровадження державних стандартів профтехосвіти у ...
0 комментариев