1.9 Теплові режими РЕЗ

 

1.9.1 Нагрівання тіла зовнішнім середовищем

Будемо розрізняти два типи температурних режимів:

1) стаціонарний – при якому температурне поле РЕЗ не змінюється з часом τ;

2) нестаціонарний – поле РЕЗ змінюється з часом.

Нехай в тілі довільної форми температура всіх точок однакова. Внутрішні джерела енергії відсутні. Тіло з температурою  переноситься в середовище з температурою .

Різниця температури тіла і температури середовища змінюється з часом по експоненційному закону (рис.1.9)

 

а) б)

Рис.1.9. Графік зміни температури при tc=const, Ф=0

Має місце залежність:

, (1.32)

де m0 – деяка стала, яку називають темпом охолодження або нагрівання тіла, 1/c.

При , тобто існує сталий режим, який називається регулярним режимом першого роду. З деякого часу  значення  і режим стає практично сталим.

1.9.2 Нагрівання тіла внутрішнім джерелом енергії

Нехай елементи РЕЗ виділяють тепло, яке утворює тепловий потік потужністю Ф, . При  наступає стаціонарний режим (рис.1.10). Температура тіла стає рівною

,

де .

Має місце формула аналогічна формулі (1.32):

. (1.33)

 

а) б)

Рис.1.10. Графік зміни температури при tc=const, Ф=const

1.9.3 Розрахунок температури корпуса та нагрітої зони

Середній тепловий потік Ф, що проходить через корпус в оточуюче середовище, практично дорівнює потужності Р, яку споживає електронний пристрій і яка задана. При цьому відомою вважаємо температуру середовища tc, а потрібно знайти температуру корпусу tк. Перегрів корпус – середовище  відповідає потоку Ф згідно формули

. (1.34)

Поверхня корпуса приймається ізотермічною поверхнею і тому процес випромінювання однаковий по всій поверхні корпуса площею А. Конвективна тепловіддача здійснюється по різному через бокові грані площею Аб, кришку і дно площею Ак. Перегрів θкс – величина невідома. Коефіцієнт тепловіддачі можна визначити, якщо заданий перегрів θкс. Отже температуру корпусу tk можна визначити, якщо знайти перегрів θКС. Значення θКС шукають з допомогою теплової характеристики Ф=Ф(θКС), яку попередньо треба побудувати. Графік Ф(θКС) проходить через початок координат: Ф(0)=0. Для побудови графіка (рис.1.11) знаходимо ще дві точки, бо графік дещо відрізняється від лінійного. Спочатку задаємось значенням перегріву θ1. Тоді згідно формули (1.34) можемо знайти значення теплового потоку Ф1, який для даного РЕЗ може забезпечити цей перегрів θ1. Значення θ1 та Ф1 визначить точку 1 теплової характеристики. Задавшись значенням θ2 та повторивши розрахунки для визначення Ф2, знайдемо точку 2. Звичайно графік теплової характеристики будується на міліметровому папері в масштабі по координатним осям. Оскільки задана потужність Р, яку споживає РЕЗ, то з допомогою графіка знаходимо справжній перегрів θКС. Після цього знаходимо температуру корпуса

.

 

Рис.1.11. Теплова характеристика корпус-середовище

Знаючи температуру корпуса tK можна перейти до визначення температури нагрітої зони tS. Нагріта зона – простір, обмежений умовною ізотермічною поверхнею, яка зміщена в середину корпуса на певну відстань. Товщина повітряного прошарку δ між корпусом і поверхнею нагрітої зони задається в залежності від типу теплової моделі РЕЗ. На рис.1.12, а зображена нагріта зона герметичного РЕЗ з горизонтальним шассі. Нагріті елементи, що змонтовані на шассі, утворюють нагріту зону. Температура поверхні нагрітої зони tS. Тепловіддача від нагрітої зони до корпусу здійснюється через прошарок. Товщина прошарків h1 і h2 співрозмірна з розмірами нагрітої зони, тому ефективні коефіцієнти тепловіддачі визначаються за формулою (1.24).

Для РЕЗ касетного типу (рис.1.12, б) нагріта зона з корпусом утворює тонкі прошарки товщиною δ. Тому ефективні коефіцієнти тепловіддачі визначаються за формулою (1.23).

 

а)

б)

Рис.1.12. Нагріта зона РЕЗ з горизонтальним шассі (а) та касетного типу (б)

Температура поверхні нагрітої зони tS визначається з допомогою теплової характеристики зона – корпус. Ця теплова характеристика знаходиться аналогічно тепловій характеристиці корпус – середовище згідно формулі (1.34). В результаті знаходиться перегрів θSK і визначається температура нагрітої зони tS = tK - θSK.



Информация о работе «Конструювання обчислювальної техніки»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 91535
Количество таблиц: 35
Количество изображений: 66

Похожие работы

Скачать
26414
9
9

... до студентів інформацію зрозуміло та цікаво. 7.3. 20.03.09 Робота з навчально-методичною літературою. Відвідування бібліотеки. Підготовка до практичних робіт з дисципліни "Основи конструювання ОТ" 7.4. 24.03.09 Обговорення з керівником асистентської практики. 7.5 25.03.09 Участь в методичному семінарі кафедри. Ознайомились з науково-дослідною роботою ...

Скачать
50107
0
18

... "ВНІЇЕМ-3", а також надшвидкодіюча БЕСМ-6 з продуктивністю 1 млн операцій в секунду. 2.3 Третє покоління комп'ютерів Поява інтегрованих схем започаткувала новий етап розвитку обчислювальної техніки - народження машин третього покоління. Інтегрована схема, яку також називають кристалом, являє собою мініатюрну електронну схему, витравлену на поверхні кремнієвого кристала площею приблизно 10 ...

Скачать
28971
0
0

... рахунку всі науково-технічні поняття є відображенням технічного об'єкта. Поняття “технічний об'єкт” і “об'єкт технічної науки” виконують різну методологічну функцію у філософському аналізі техніки і науково-технічного пізнання. У понятті “технічний об'єкт” фіксується реально змінювана в практиці сторона об'єктивного світу. Технічний об'єкт відображається у філософських, суспільних, природних і ...

Скачать
104532
0
2

... ів з професій (Типові навчальні плани і програми, кваліфікаційні характеристики і т. ін.), що входять до цього переліку, практично робить неможливим перехід на підготовку робітничих кадрів згідно з означеним документом, оновлення змісту професійно-технічної освіти. Сьогодні, на нашу думку, першочерговим завданням у розв'язанні проблеми розробки і впровадження державних стандартів профтехосвіти у ...

0 комментариев


Наверх