2.2. Використання ПК на уроках математики при побудові графіків функцій
Впровадження в навчальний процес сучасних засобів збору, збереження, передача інформації відкриває широкі перспективи гуманітаризації освіти й гуманізації навчального процесу, поглиблення й розширення теоретичної бази знань і надання результам навчання практичної значимості, активізації пізнавальної діяльності, створення умов для повного розкриття творчого потенціалу дітей з обліком їхніх вікових особливостей і життєвого досвіду, індивідуальних нахилів, запитів і здібностей.
Разом з тим виникає цілий ряд проблем, що стосуються змісту, методів, організаційних форм і засобів навчання, обов'язкових рівнів знань із різних навчальних предметів, яких повинна досягти кожна дитина.
При цьому вчителеві не нав'язується ніяка методика подання навчального матеріалу, закріплення й контролю знань, конкретний зміст, методи, засоби й організаційні форми навчання, співвідношення між самостійною роботою учнів і роботою разом із вчителем, між індивідуальними й колективними формами роботи й ін. Все це вчитель повинен визначити сам з обліком своїх власних позицій і смаків, специфіки умов, у яких перебігає навчальний процес, індивідуальних особливостей окремих учнів і класного колективу.
Ясно, що неможливо й немає необхідності всіх дітей однаково вчити й навчити, сформувати в кожної дитини ті самі знання, уміння й навички в різних предметних галузях, обов'язково домагатися від дітей досягнення однакового рівня розвитку логічного й творчого мислення, загального сприйняття різних проявів навколишньої дійсності. Це стосується й навчання математики, методів розв'язання задач, побудови й аналізу математичних моделей різноманітних процесів й явищ, інтерпретації й узагальнення результатів такого аналізу [15].
Сьогодні розроблена вже значна кількість програмних засобів, що дозволяють вирішувати за допомогою комп'ютера досить широке коло математичних задач різних рівнів складності. Це такі програмні засоби, як, GRAN 1, Maple, Mathematika, MathLab,і ін. Причому одні з них орієнтовані на фахівців досить високої кваліфікації в галузі математики, інші -на учнів середніх навчальних закладів або студентів вузів, що лише почали вивчати шкільний курс математики або основи вищої математики.
Найбільш зручними для підтримки вивчення курсу математики в середніх навчальних закладах видаються комплект програм GRAN (GRAN1, Gran-2D, Gran-3, ін.). Від користувача не потрібен значний об'єм спеціальних знань із інформатики, основ обчислювальної техніки, програмування тощо, за винятком найпростіших понять, повністю доступних для учнів середніх класів.
Використання подібних програм дає можливість учневі вирішувати окремі задачі, не знаючи відповідного аналітичного апарата, методів і формул, правил перетворення виразів, тощо. Наприклад, учень може вирішувати рівняння й нерівності і їхні системи, не знаючи формул для відшукування коренів, методу виключення змінних, досліджувати функції, не знаючи алгоритмів їхнього дослідження, не використовуючи симплекс-метод, градиентные методи й т.д. Разом з тим завдяки можливостям графічного супроводу комп'ютерного розв'язання задачі, учень чітко й буде легко вирішувати досить складні задачі, упевнено володіти відповідною системою понять і правил. Використання програмних засобів відзначеного типу дає можливість у багатьох випадках зробити розв'язання задачі настільки ж доступним, як простий розгляд малюнків або графічних зображень. Відповідні програмні засоби перетворюють окремі розділи й методи математики в "математику для всіх", що стають доступними, зрозумілого, легкого й зручними для використання, а той, хто вирішує задачу, стає користувачем математичних методів, можливо не володіючи їхньою побудовою, аналогічно до того, як він використає інші комп'ютерні програми (текстові, графічні, музичні редактори, електронні таблиці, бази даних), не знаючи, як і за якими принципами їх побудована, якими мовами програмування описані, які теоретичні положення покладені в їхню основу.
З іншої сторони такий підхід до вивчення математики дає наочні подання про поняття, які вивчаються, розвиває образне мислення, просторову уяву, дозволяє досить глибоко проникнути в сутність досліджуваного явища, неформально вирішувати задачу. При цьому на передній план виступає з'ясування проблеми, постановка задачі, розробка відповідної математичної моделі, матеріальна інтерпретація отриманих за допомогою комп'ютера результатів. Всі технічні операції щодо розробки побудованої математичної моделі, реалізації методу відшукування розв’язування, оформлення й подання результатів розробки вхідних даних покладають на комп'ютер.
Важко переоцінити програмні засоби відзначеного типу й при поглибленому вивчанні математики. Можливість провести необхідний чисельний експеримент, швидко виконати потрібні обчислення або графічні побудови, перевірити ту або іншу гіпотезу, випробувати той або інший метод розв'язання задачі, уміти проаналізувати й пояснити результати, отримані за допомогою комп'ютера, з'ясувати границі можливостей використання комп'ютера або обраного методу розв'язання задачі мають надзвичайне значення при вивченні методів математики.
Вже з наведеного видно, як може змінюватися (причому в досить широкому діапазоні) зміст і структура навчальної діяльності учнів при вивченні математики залежно від специфіки обраної ними предметної галузі, спрямованості навчання, індивідуальних нахилів і здатностей. При цьому комп'ютерна підтримка вивчення математики з використанням програмних засобів відзначеного типу дає значний педагогічний ефект, полегшуючи, розширюючи й поглиблюючи вивчення й розуміння методів математики на відповідних рівнях у середніх навчальних закладах з найрізноманітнішими нахилами в навчанні - гуманітарного напрямку, різних профілів, середніх загальноосвітніх школах, гімназіях, ліцеях, класах і закладах з поглибленим вивчанням природно-математичних дисциплін. Природно, і програми курсів математики, і глибина вивчення відповідних понять, законів, методів, аналітичного апарата можуть істотно відрізнятися між собою.
Не розглядаючи детально всі теми, досліджуванні у курсі математики середньої загальноосвітньої школи, можна помітити, що комп'ютерні програми згаданого типу можуть бути використані практично на всіх уроках математики, починаючи вже з п'ятих - шостих класів, зокрема при вивченні системи координат на прямій і на площині, планіметрії, поняття функції, елементарних функцій й їх властивостей.
Зрозуміло, що крім програм відзначеного типу вчитель при необхідності може використати різного роду тренажери, програми для контролю знань, збір статистичних даних щодо навчального процесу і їхнього пророблення тощо. Використання таких програм дає можливість учителеві значно інтенсифікувати спілкування з учнями й учнів між собою, більше уваги приділити задачам на доказ, на постановку задач, побудова їхніх математичних моделей, розробку й дослідження методів розв'язання задач, дослідження рішень, логічний аналіз умов задач, пошук нестандартних підходів до розв'язання задач, виявленню закономірностей, яким підкоряються досліджувані процеси і явища, перевести на комп'ютер рутинні, чисто технічні й нецікаві операції, ручне виконання яких практично не розвиває інтелект дитини, а часто навіть, навпроти, гасить його, коли дитина вподібнюється роботу або комп'ютеру, виконуючи замість нього обчислювальні, графічні й інші технічні операції.
Зрозуміло, що заняття з математики, орієнтовані на використання засобів навчання згаданих типів, повинні проводитися відповідним чином оснащеному технічними й програмними засобами класі. У таких класах повинні вивчатися всі навчальні предмети, а не тільки основи інформатики й обчислювальної техніки. Це у свою чергу буде сприяти розширенню й поглибленню межпредметных зв'язків, інтеграції окремих навчальних предметів, їхньому взаємопроникненню й взаємодії, що в остаточному підсумку дасть можливість в окремих навчальних закладах або класах опановувати елементами нових інформаційних технологій й інформаційної культури при вивченні різних навчальних дисциплін, а не лише окремого, майже ізольованого від інших, навчального курсу "Основи інформатики й обчислювальної техніки"[17].
У посібнику «Математика з комп'ютером» [16] досить детально розглядається програмний засіб GRAN1 в об'ємі, що відповідає програмі курсу математики середньої загальноосвітньої школи. Названий засіб призначений у першу чергу для розв'язання певних класів задач різними методами й може бути віднесений до так називаних програм - розв’язуванням.
У посібнику описуються правила роботи із програмою GRAM для Windows (надалі - GRAN1), розробленої спеціально для підтримки шкільного курсу математики. Аналізуються можливості використання програми при вивченні різних розділів математики в середній загальноосвітній школі, СПТУ, педагогічних училищах, середніх навчальних закладах гуманітарного напрямку.
Програма GRAN1 призначена для графічного аналізу функцій, звідки й походить її назва (Graphic Analysis).
Для побудови графіків залежностей між змінними (різних типів завдання) і виконання деяких інших операцій над графічними побудовами призначений пункт "Графіки".
Підпункт "Побудувати" використається при необхідності побудувати графіки однієї або декількох уведених залежностей. Якщо графік деякої введеної залежності будувати не потрібно, тоді за допомогою маніпулятора "мишка" або клавіші "попуск" на клавіатурі варто зняти мітку й проти позначення залежності у вікні "Список об'єктів". Графіки залежностей, проти позначення яких стоїть знак 0, будуть накреслені при звертанні до послуги "Побудувати".
Вираження залежностей подаються у вікні "Список об'єктів" символами тих же кольорів, що й відповідні їм графіки, зображувані у вікні "Графіки". Кількість об'єктів не обмежується (обмежується лише апаратними ресурсами комп'ютера).
Для завдання явної залежності між змінними x й y у декартовой системі координат, необхідно спочатку встановити тип завдання залежності "Явна: Y=Y(X)" у вікні "Список об'єктів".
Потім варто звернутися до послуги "Об'єкт/Створити" або нажати кнопку "f+" на панелі інструментів.
У результаті з'являється допоміжне вікно "Вступ вираження залежності". У рядок "Y(X)=" потрібно ввести вираження, що задає залежність.
Цей рядок являє собою список, що розкривається, і при створенні нової залежності відповідне вираження заноситься в цей список. Тому при створенні наступної залежності можна вводити вираження з використанням даних із цього списку.
Якщо вираження записане неправильно, то буде виведене повідомлення про помилку.
Введення даних можна здійснити як із клавіатури, так і за допомогою "мишки", використовуючи панель «Введення даних», що подано в допоміжному вікні .
Після введення виразу можна вказати кольори, яким у вікні «Графіки" буде будуватися графік залежності, для чого необхідно встановити перемикач "FG" у відповідне положення (вказавши потрібні кольори курсором "мишки").
У допоміжному вікні також указується кількість точок побудови графіка (від 10 до 1000, за умовчуванням 100). Потрібно відзначити, що зі збільшенням кількості точок побудови швидкість обчислень і побудов графіків зменшується. Разом з тим зі зменшенням кількості точок побудови зменшується точність графічних побудов.
Іноді зручно не будувати весь графік, а прорисовувати лише вузлові точки. У цьому випадку потрібно встановити мітку поруч із написом не «з'єднувати точки відрізками».
На рисунку 1 представлений безперервний графік залежності y = x - 3 (з 100 точок на графіку з'єднані відрізками прямих, а на мал. 4 – набір точок графіка тієї ж залежності, не з'єднаних відрізками прямих, а на рис. 5 графік тієї ж залежності, але кількість точок побудови дорівнює 10.
Кнопка «ОК» служить для створення нового об'єкта у вікні «Список об'єктів», а кнопка «Скасувати» скасовує всі дії щодо створення об'єкта (рис.2).
Приклади:
1. Нехай необхідно побудувати графік функції y = x2-3. Встановимо у вікні «Список об'єктів» тип залежності «Явна У = У(Х):». Потім звернемося до послуги «Об'єкт/Створити». У результаті з'явиться допоміжне вікно «Введеня виразу залежності».
Введемо вираз х^2 – 3 у рядку «У(Х) =». У рядку «А=» введемо значення лівої границі відрізка заданої функції, наприклад -7, а в рядку «В=» введемо значення правої границі відрізка, наприклад, 5. Кольори й кількість точок побудови графіка залишимо заданим за умовчуванням і натиснемо кнопку «ОК». У результаті у вікні «Список об'єктів» одержимо: новий об'єкт У(Х) =х^2 – 3 (рис. 7)
У нижній частині цього вікна подані деякі характеристики залежності: А=-7, В=5, Min Y = -3, Max Y = 46.
Звернемося тепер до послуги головного меню «Графік/Побудувати». У результаті у вікні «Графіки» з'явиться графік залежності y = х -3, побудований на відрізку [-7,5] (рис. 7).
Іноді буває необхідним збільшити зображення в деякій частині вікна "Графіки" до розмірів усього вікна. Для цього варто вказати прямокутник, у якому розміщена частина зображення, що збільшується. Ця операція здійснюється за допомогою маніпулятора "мишка". Курсор "мишки" потрібно встановити в одну з вершин необхідного прямокутника, потім нажати ліву кнопку "мишки" й, не відпускаючи її, вказівку "мишки" перевести в крапку, що є протилежною вершиною прямокутника.
Як тільки кнопка "мишки" буде відпущена автоматично відбудеться зміна масштабу уздовж осей Ох й Оу. У вікні "Графіки" будується збільшена до розмірів усього вікна частина зображення, що була розташована усередині прямокутника. Ця послуга використається при необхідності уточнити вид графіка в деякій його частині, координати характерних його точок.
Збільшення масштабу, у якому будуються графіки фактично приводить до збільшення точності обчислень у біля досліджуваної точки.
Щоб після операції збільшення повернутися до попереднього зображення, варто звернутися до послуги «Графік/Масштаб/Попередній масштаб» або скористатися кнопкою «М<» панелі інструментів.
При необхідності вилучити з вікна «Графіки» побудовані там зображення використається послуга «Графік/Очистити».
... нтуватися на використання підручників [53; 54; 5]. У класах фізико-математичного спрямування доцільно орієнтуватись на використання підручників [53; 54; 5; 1]. РОЗДІЛ 2 ОСОБЛИВОСТІ ВИВЧЕННЯ МАТЕМАТИКИ У ПРОФІЛЬНИХ КЛАСАХ В СУЧАСНИХ УМОВАХ 2.1. ОСНОВНІ ПОЛОЖЕННЯ ПРОФІЛЬНОЇ ДИФЕРЕНЦІАЦІЇ НАВЧАННЯ МАТЕМАТИКИ Математика є універсальною мовою, яка широко застосовується в усіх ...
... і правила, формули, тотожності, а також означення і теореми у програмі - послідовності кроків розв'язування задач відповідних видів. 2.3 Проблемні задачі як засіб розвитку творчих здібностей учнів На уроках математики практикують різні прийоми, щоб формувати в дітей критичне та логічне, творче мислення. Розв’язуючи задачу, дають такі завдання - змінити умову таким чином, щоб вона розв’ ...
... навчання на уроках географії, таких як моделюючий малюнок, картографічні засоби навчання, підручник з географії та електронний атлас. На основі аналізу класифікації функцій та методики застосування наочних засобів навчання географії нами були розроблені плани конспектів-уроків для 6, 7 та 8 класів із безпосереднім використанням, які б могли покращити рівень навчального процесу та успішності учн ...
... ів є актуальною, оскільки на її основі реально можна розробити формувальні, розвивальні та оздоровчі структурні компоненти технологічних моделей у цілісній системі взаємодії соціальних інститутів суспільства у формуванні здорового способу життя дітей та підлітків. На основі інформації, яка отримана в результаті діагностики, реалізується методика розробки ефективних критеріїв оцінки інноваційних ...
0 комментариев