МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ
Учреждение образования
"Гомельский государственный университет имени Франциска Скорины"
Математический факультет Кафедра алгебры и геометрии
Допущена к защите
Зав. кафедрой Шеметков Л.А.
" " 2005г.
Дипломная работа
Свойство централизаторов конгруэнций универсальных алгебр
Исполнитель
студентка группы М-51
Шутова И.Н.
Руководитель
Д., ф-м н., профессор Монахов В.С.
Гомель 2005
Содержание
Введение
1. Основные определения и используемые результаты
2. Свойство централизаторов универсальных алгебр
3. Мультикольцо
Заключение
Список использованных источников
Введение
В теории формаций конечных групп, мультиколец и многих других алгебраических систем исключительно важную роль играют такие понятия, как локальные экраны, локальные формации, основанные на определении центральных рядов. Впервые понятие централизуемости конгруэнций было введено Смитом в работе [5]. Возникает задача согласованности определения централизуемости Смита с определением в группах и мультикольцах.Такая задача была решена в указанной работе Смита [5], где было показано:нормальная подгруппа группы централизует подгруппу тогда и только тогда, когда конгруэнции,индуцированные этими нормальными подгруппами, централизуют друг друга в смысле Смита.
Возникает следующий вопрос: справедливо ли аналогичное утверждение для мультиколец, т.е. будут ли выполнятся свойства централизуемости, изложенные в работе [3], для универсальных алгебр.
В настоящей дипломной работе решается задача взаимосвязи структуры мультиколец и универсальных алгебр, получен новый результат: идеал тогда и только тогда централизуется идеалом , когда соответствующие этим идеалам конгруэнции централизуют друг друга в смысле Смита.
Дипломная работа включает в себя введение, три параграфа и список литературы из 10 наименований.
Перейдем к краткому изложению содержания дипломной работы.
Раздел 1 является вспомогательным и включает в себя все необходимые определения и используемые результаты.
Раздел 2 носит реферативный характер. Здесь приводятся свойства централизаторов конгруэнций, доказательства которых изложены в работах [5, 6, 7].
Раздел 3 является основным. Здесь вводится определение мультикольца, определение идеала мультикольца, определение централизатора идеала и с использованием данных определений доказывается основной результат работы (теоремы 3.4. и 3.5).
1. Основные определения и используемые результаты
Определение 1.1. [1] Универсальной алгеброй, или, короче, алгеброй называется пара , где - непустое множество, - (возможно пустое) множество операций на .
Определение 1.2. [1] Конгруэнцией на универсальной алгебре называется всякое отношение эквивалентности на , являющееся подалгеброй алгебры .
Определение 1.3. [1] Если и - алгебры сигнатуры , то отображение называется гомоморфизмом, если для любой -арной операции и любых элементов выполняется равенство:
Взаимно однозначный гомоморфизм называется изоморфизмом.
Теорема 1.1. [1] Пусть - гомоморфизм универсальных алгебр, тогда множество
является конгруэнцией на алгебре и называется ядром гомоморфизма
Теорема 1.2. [1] Пусть - гомоморфное наложение, тогда .
Теорема 1.3. [1] Пусть - конгруэнции на алгебре и , тогда .
Определение 1.4. [2] Непустой абстрактный класс алгебр сигнатуры называется многообразием, если замкнут относительно подалгебр и прямых произведений.
Многообразие называется мальцевским, если конгруэнции любой алгебры из попарно перестановочны.
Теорема 1.4. [2] Конгруэнции любой алгебры многообразия попарно перестановочны тогда и только тогда, когда существует термальная операция , что во всех алгебрах из справедливы тождества
Определение 1.5. [3] Пусть и - факторы алгебры . Тогда они называются:
1) перспективными, если либо и , либо и ;
2) проективными, если в найдутся такие факторы , что для любого факторы и перспективны.
Теорема 1.5. [4] Между факторами произвольных двух главных рядов алгебры , принадлежащей мальцевскому многообразию, можно установить такое взаимно однозначное соответствие, при котором соответствующие факторы проективны и централизаторы в равны.
Теорема 1.6. [2] (Лемма Цорна). Если верхний конус любой цепи частично упорядоченного множества не пуст, то содержит максимальные элементы.
деление 1.2. Пара , где – непустое множество, а (возможно, пустое) множество операций на , называется универсальной алгеброй или, короче, алгеброй. Совокупность операций (или опрерационных символов) будем называть сигнатурой. Часто, при введении алгебры, указывают только множество и не указывают сигнатуру. Элемент алгебры отмечаемый -арной операцией . будем обозначать через . Определение ...
... алгебре , тогда называется конгруэнцией, порожденной конгруэнцией , если тогда и только тогда, когда существуют такие, что . Определение 3.4 Конгруэнцией Фраттини универсальной алгебры назовем конгруэнцию, порожденную всеми фраттиниевыми конгруэнциями алгебры и будем обозначать . Теорема Конгруэнция Фраттини является фраттиниевой конгруэнцией. Доказательство: Из теоремы (??) ...
... компонентами группы . наличие в групповой структуры позволяет высказать о компонентах ряд важных утверждений, отсутствующих в случае произвольного многообразия. 1.3.1 Теорема. Пусть --- алгебраическая группа матриц. Её компонента , содержащая единицу, единственна и является нормальной подгруппой. Остальные компоненты --- смежные классы по (в частности, они являются связными компонентами ...
0 комментариев