2. Свойство централизаторов конгруэнций универсальных алгебр
Под термином ``алгебра'' в дальнейшем будем понимать универсальную алгебру. Все рассматриваемые алгебры предполагаются входящими в фиксированное мальцевское многообразие . Используются определения и обозначения из работы [1]. Дополнительно отметим, что конгруэнции произвольной алгебры обозначаются греческими буквами. Если - конгруэнция на алгебре , то - класс эквивалентности алгебры по конгруэнции , - факторалгебра алгебры по конгруэнции . Если и - конгруэнции на алгебре , , то конгруэнцию на алгебре назовем фактором на . Очевидно, что тогда и только тогда, когда . или и или - соответственно наименьший и наибольший элементы решетки конгруэнций алгебры .
Будем пользоваться следующим определением централизуемости конгруэнций, эквивалентность которого определению Смита [5] доказана в работе [6].
Определение 2.1. Пусть и - конгруэнции на алгебре . Тогда централизует (записывается: ), если на существует такая конгруэнция , что:
1) из всегда следует ;
2) для любого элемента всегда выполняется
3) если , то .
Следующие свойства централизуемости, полученные Смитом [5], сформулируем в виде леммы.
Лемма 2.1. Пусть . Тогда:
существует единственная конгруэнция , удовлетворяющая определению 2.1;
;
если , то .
Из леммы 2.1 и леммы Цорна следует, что для произвольной конгруэнции на алгебре существует такая единственная наибольшая конгруэнция , что . Эту конгруэнцию будем называть централизатором конгруэнции в и обозначать .
Лемма 2.2. Пусть - конгруэнции на алгебре , , , . Тогда справедливы следующие утверждения:
;
, где ;
если, , либо
, либо
, то всегда ;
из всегда следует .
Доказательство. 1). Очевидно, что - конгруэнция на , удовлетворяющая определению 1. Значит, в силу п.1) леммы 2.1 .
2). - конгруэнция на , удовлетворяющая определению 2.1. Значит, .
3). Пусть . Тогда
Применим к последним трем соотношениям мальцевский оператор такой, что , для любых элементов . Тогда получим
Аналогичным образом доказываются остальные случаи п.3).
4). Пусть . Тогда справедливы следующие соотношения:
Следовательно, , где - мальцевский оператор. Тогда , т.е. . Так как и , то . Таким образом . Лемма доказана.
В дальнейшем мы будем часто ссылаться на следующий хорошо известный факт (доказательство см., например [6]).
Лемма 2.3. Любая подалгебра алгебры , содержащая конгруэнцию , является конгруэнцией на .
Доказательство следующего результата работы [5] содержит пробел (следствие 224 [5] неверно, см. [7]), поэтому докажем его.
Лемма 2.4. Пусть . Тогда для любой конгруэнции на
Доказательство. Обозначим и определим на алгебре бинарное отношение следующим образом:
тогда и только тогда, когда , где , . Используя лемму 2.3, нетрудно показать, что - конгруэнция на алгебре , причем .
Пусть , т.е. , . Тогда и, значит, .
Пусть, наконец, имеет место и . Тогда справедливы следующие соотношения:
Применяя мальцевский оператор к этим трем соотношениям, получаем: . Из леммы 2.2 следует, что . Так как и , то . Значит, . Но , следовательно, . Итак, и удовлетворяет определению 2.1. Лемма доказана.
Лемма 2.5. Пусть и - конгруэнции на алгебре , и - изоморфизм, определенный на . Тогда для любого элемента отображение определяет изоморфизм алгебры на алгебру , при котором . В частности, .
Доказательство. Очевидно, что - изоморфизм алгебры на алгебру , при котором конгруэнции , изоморфны соответственно конгруэнциям и . Так как , то определена конгруэнция , удовлетворяющая определению 2.1. Изоморфизм алгебры на алгебру индуцирует в свою очередь изоморфизм алгебры на алгебру такой, что для любых элементов и , принадлежащих . Но тогда легко проверить, что - конгруэнция на алгебре изоморфная конгруэнции . Это и означает, что . Лемма доказана.
Если и - факторы на алгебре такие, что , то конгруэнцию обозначим через и назовем централизатором фактора в .
Напомним, что факторы и на алгебре называются перспективными, если либо и , либо и .
Докажем основные свойства централизаторов конгруэнций.
Теорема 2.1. Пусть - конгруэнции на алгебре . Тогда:
если , то ;
если , то ;
;
если , и факторы , перспективны, то
если - конгруэнции на и , то
Доказательство. 1). Так как конгруэнция централизует любую конгруэнцию и , то .
2). Из п.1) леммы 2.2 следует, что , а в силу леммы 2.4 получаем, что .
Пусть - изоморфизм . Обозначим
По лемме 2.5 , а по определению
Следовательно, .
3). Очевидно, достаточно показать, что для любых двух конгруэнций и на алгебре имеет место равенство:
Покажем вначале, что
Обозначим . Тогда, согласно определения 2.1, на алгебре существует такая конгруэнция , что выполняются следующие свойства:
а) если , то ;
б) для любого элемента , ;
в) если и , то .
Построим бинарное отношение на алгебре следующим образом:
тогда и только тогда, когда и , . Покажем, что - конгруэнция на . Пусть , . Тогда и , . Так как - конгруэнция, то для любой -арной операции имеем:
Очевидно, что (, и , . Следовательно, . Очевидно, что для любой пары . Значит, . Итак, по лемме 2.3, - конгруэнция на . Покажем теперь, что удовлетворяет определению 2.1, т.е. централизует .
Пусть
Тогда и . Так как , и , то . Следовательно, удовлетворяет определению 2.1.
Если , то , значит,
Пусть, наконец, имеет место (1) и
Тогда . Так как и , то , следовательно, . Из (2) следует, что , а по условию . Значит, и поэтому . Тем самым показано, что конгруэнция удовлетворяет определению 2.1, т.е. централизует . Докажем обратное включение. Пусть . Тогда на алгебре определена конгруэнция , удовлетворяющая определению 2.1. Построим бинарное отношение на алгебре следующим образом:
тогда и только тогда, когда
и , . Аналогично, как и выше, нетрудно показать, что - конгруэнция на алгебре . Заметим, что из доказанного включения следует, что . Покажем поэтому, что централизует . Так как , и , то , т.е. удовлетворяет условию 1) определения 2.1.
Если , то , следовательно, .
Пусть имеет место (3) и . Так как , , то и . Из (4) следует, что , следовательно, , т.е. . На основании леммы 2.2 заключаем, что . Следовательно, . Но так как , то , т.е. .
4) Обозначим . Пусть и удовлетворяет определению 2.1. Определим бинарное отношение на следующим образом тогда и только тогда, когда . Аналогично, как и выше, нетрудно показать, что - конгруэнция, удовлетворяющая определению 2.1. Это и означает, что . Теорема доказана.
Как следствие, из доказанной теоремы получаем аналогичные свойства централизаторов в группах и мультикольцах.
деление 1.2. Пара , где – непустое множество, а (возможно, пустое) множество операций на , называется универсальной алгеброй или, короче, алгеброй. Совокупность операций (или опрерационных символов) будем называть сигнатурой. Часто, при введении алгебры, указывают только множество и не указывают сигнатуру. Элемент алгебры отмечаемый -арной операцией . будем обозначать через . Определение ...
... алгебре , тогда называется конгруэнцией, порожденной конгруэнцией , если тогда и только тогда, когда существуют такие, что . Определение 3.4 Конгруэнцией Фраттини универсальной алгебры назовем конгруэнцию, порожденную всеми фраттиниевыми конгруэнциями алгебры и будем обозначать . Теорема Конгруэнция Фраттини является фраттиниевой конгруэнцией. Доказательство: Из теоремы (??) ...
... компонентами группы . наличие в групповой структуры позволяет высказать о компонентах ряд важных утверждений, отсутствующих в случае произвольного многообразия. 1.3.1 Теорема. Пусть --- алгебраическая группа матриц. Её компонента , содержащая единицу, единственна и является нормальной подгруппой. Остальные компоненты --- смежные классы по (в частности, они являются связными компонентами ...
0 комментариев