2. Свойство централизаторов конгруэнций универсальных алгебр

Под термином ``алгебра'' в дальнейшем будем понимать универсальную алгебру. Все рассматриваемые алгебры предполагаются входящими в фиксированное мальцевское многообразие . Используются определения и обозначения из работы [1]. Дополнительно отметим, что конгруэнции произвольной алгебры обозначаются греческими буквами. Если  - конгруэнция на алгебре , то  - класс эквивалентности алгебры  по конгруэнции ,  - факторалгебра алгебры  по конгруэнции . Если  и  - конгруэнции на алгебре , , то конгруэнцию  на алгебре  назовем фактором на . Очевидно, что  тогда и только тогда, когда .  или  и  или  - соответственно наименьший и наибольший элементы решетки конгруэнций алгебры .

Будем пользоваться следующим определением централизуемости конгруэнций, эквивалентность которого определению Смита [5] доказана в работе [6].

Определение 2.1. Пусть  и  - конгруэнции на алгебре . Тогда  централизует  (записывается: ), если на  существует такая конгруэнция , что:

1) из  всегда следует ;

2) для любого элемента  всегда выполняется

3) если , то .

Следующие свойства централизуемости, полученные Смитом [5], сформулируем в виде леммы.

Лемма 2.1. Пусть . Тогда:

 существует единственная конгруэнция , удовлетворяющая определению 2.1;

 ;

 если , то .

Из леммы 2.1 и леммы Цорна следует, что для произвольной конгруэнции  на алгебре  существует такая единственная наибольшая конгруэнция , что . Эту конгруэнцию  будем называть централизатором конгруэнции  в  и обозначать .

Лемма 2.2. Пусть  - конгруэнции на алгебре , , , . Тогда справедливы следующие утверждения:

 ;

 , где ;

 если, , либо

, либо

, то всегда ;

 из  всегда следует .

Доказательство. 1). Очевидно, что  - конгруэнция на , удовлетворяющая определению 1. Значит, в силу п.1) леммы 2.1 .

2).  - конгруэнция на , удовлетворяющая определению 2.1. Значит, .

3). Пусть . Тогда

Применим к последним трем соотношениям мальцевский оператор  такой, что , для любых элементов . Тогда получим

Аналогичным образом доказываются остальные случаи п.3).

4). Пусть . Тогда справедливы следующие соотношения:

Следовательно, , где  - мальцевский оператор. Тогда , т.е. . Так как  и , то . Таким образом . Лемма доказана.

В дальнейшем мы будем часто ссылаться на следующий хорошо известный факт (доказательство см., например [6]).

Лемма 2.3. Любая подалгебра алгебры , содержащая конгруэнцию , является конгруэнцией на .

Доказательство следующего результата работы [5] содержит пробел (следствие 224 [5] неверно, см. [7]), поэтому докажем его.

Лемма 2.4. Пусть . Тогда для любой конгруэнции  на

 

Доказательство. Обозначим  и определим на алгебре  бинарное отношение  следующим образом:

тогда и только тогда, когда , где , . Используя лемму 2.3, нетрудно показать, что  - конгруэнция на алгебре , причем .

Пусть , т.е. , . Тогда  и, значит, .

Пусть, наконец, имеет место  и . Тогда справедливы следующие соотношения:

Применяя мальцевский оператор  к этим трем соотношениям, получаем: . Из леммы 2.2 следует, что . Так как  и , то . Значит, . Но , следовательно, . Итак,  и удовлетворяет определению 2.1. Лемма доказана.

Лемма 2.5. Пусть  и  - конгруэнции на алгебре ,  и  - изоморфизм, определенный на . Тогда для любого элемента  отображение  определяет изоморфизм алгебры  на алгебру , при котором . В частности, .

Доказательство. Очевидно, что  - изоморфизм алгебры  на алгебру , при котором конгруэнции ,  изоморфны соответственно конгруэнциям  и . Так как , то определена конгруэнция , удовлетворяющая определению 2.1. Изоморфизм  алгебры  на алгебру  индуцирует в свою очередь изоморфизм  алгебры  на алгебру  такой, что  для любых элементов  и , принадлежащих . Но тогда легко проверить, что  - конгруэнция на алгебре  изоморфная конгруэнции . Это и означает, что . Лемма доказана.

Если  и  - факторы на алгебре  такие, что , то конгруэнцию  обозначим через  и назовем централизатором фактора  в .

Напомним, что факторы  и  на алгебре  называются перспективными, если либо  и , либо  и .

Докажем основные свойства централизаторов конгруэнций.

Теорема 2.1. Пусть  - конгруэнции на алгебре . Тогда:

 если , то ;

 если , то ;

;

 если ,  и факторы ,  перспективны, то

 если  - конгруэнции на  и , то

Доказательство. 1). Так как конгруэнция  централизует любую конгруэнцию и , то .

2). Из п.1) леммы 2.2 следует, что , а в силу леммы 2.4 получаем, что .

Пусть  - изоморфизм . Обозначим

По лемме 2.5 , а по определению


Следовательно, .

3). Очевидно, достаточно показать, что для любых двух конгруэнций  и  на алгебре  имеет место равенство:

Покажем вначале, что

Обозначим . Тогда, согласно определения 2.1, на алгебре  существует такая конгруэнция , что выполняются следующие свойства:

а) если , то ;

б) для любого элемента , ;

в) если  и , то .

Построим бинарное отношение  на алгебре  следующим образом:

тогда и только тогда, когда  и , . Покажем, что  - конгруэнция на . Пусть , . Тогда  и , . Так как  - конгруэнция, то для любой -арной операции  имеем:


Очевидно, что (,  и , . Следовательно, . Очевидно, что для любой пары . Значит, . Итак, по лемме 2.3,  - конгруэнция на . Покажем теперь, что  удовлетворяет определению 2.1, т.е.  централизует .

Пусть

Тогда  и . Так как ,  и , то . Следовательно,  удовлетворяет определению 2.1.

Если , то , значит,

Пусть, наконец, имеет место (1) и

Тогда . Так как  и , то , следовательно, . Из (2) следует, что , а по условию . Значит,  и поэтому . Тем самым показано, что конгруэнция  удовлетворяет определению 2.1, т.е.  централизует . Докажем обратное включение. Пусть . Тогда на алгебре  определена конгруэнция , удовлетворяющая определению 2.1. Построим бинарное отношение  на алгебре  следующим образом:

тогда и только тогда, когда

и , . Аналогично, как и выше, нетрудно показать, что  - конгруэнция на алгебре . Заметим, что из доказанного включения  следует, что . Покажем поэтому, что  централизует . Так как ,  и , то , т.е.  удовлетворяет условию 1) определения 2.1.

Если , то , следовательно, .

Пусть имеет место (3) и . Так как , , то  и . Из (4) следует, что , следовательно, , т.е. . На основании леммы 2.2 заключаем, что . Следовательно, . Но так как , то , т.е. .

4) Обозначим . Пусть  и удовлетворяет определению 2.1. Определим бинарное отношение  на  следующим образом  тогда и только тогда, когда . Аналогично, как и выше, нетрудно показать, что  - конгруэнция, удовлетворяющая определению 2.1. Это и означает, что . Теорема доказана.

Как следствие, из доказанной теоремы получаем аналогичные свойства централизаторов в группах и мультикольцах.



Информация о работе «Свойство централизаторов конгруэнций универсальных алгебр»
Раздел: Математика
Количество знаков с пробелами: 18112
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
25544
0
0

деление 1.2. Пара , где  – непустое множество, а  (возможно, пустое) множество операций на , называется универсальной алгеброй или, короче, алгеброй. Совокупность операций (или опрерационных символов)  будем называть сигнатурой. Часто, при введении алгебры, указывают только множество  и не указывают сигнатуру. Элемент алгебры  отмечаемый -арной операцией . будем обозначать через . Определение ...

Скачать
16548
0
0

... алгебре , тогда  называется конгруэнцией, порожденной конгруэнцией , если  тогда и только тогда, когда существуют  такие, что .   Определение 3.4 Конгруэнцией Фраттини универсальной алгебры  назовем конгруэнцию, порожденную всеми фраттиниевыми конгруэнциями алгебры  и будем обозначать . Теорема Конгруэнция Фраттини является фраттиниевой конгруэнцией. Доказательство: Из теоремы (??) ...

Скачать
28552
0
3

... компонентами группы . наличие в  групповой структуры позволяет высказать о компонентах ряд важных утверждений, отсутствующих в случае произвольного многообразия. 1.3.1 Теорема. Пусть  --- алгебраическая группа матриц. Её компонента , содержащая единицу, единственна и является нормальной подгруппой. Остальные компоненты --- смежные классы  по  (в частности, они являются связными компонентами ...

0 комментариев


Наверх