1.3 Потоки событий

Поток событий – последовательность однородных событий, следующих одно за другим в какие-то случайные моменты времени.

В предыдущем примере – это поток отказов и поток восстановлений. Другие примеры: поток вызовов на телефонной станции, поток покупателей в магазине и т.д.

Поток событий можно наглядно изобразить рядом точек на оси времени O t – рис. 2.

http://elib.ispu.ru/library/lessons/Koposov/15_files/image004.gif

Рис. 2. Изображение потока событий на оси времени

Положение каждой точки случайно, и здесь изображена лишь какая-то одна реализация потока.

Интенсивность потока событий (http://elib.ispu.ru/library/lessons/Koposov/15_files/image006.gif) – это среднее число событий, приходящееся на единицу времени.

Рассмотрим некоторые свойства (виды) потоков событий.

Поток событий называется стационарным, если его вероятностные характеристики не зависят от времени.

В частности, интенсивность http://elib.ispu.ru/library/lessons/Koposov/15_files/image007.gif стационарного потока постоянна. Поток событий неизбежно имеет сгущения или разрежения, но они не носят закономерного характера, и среднее число событий, приходящееся на единицу времени, постоянно и от времени не зависит.

Поток событий называется потоком без последствий, если для любых двух непересекающихся участков времени http://elib.ispu.ru/library/lessons/Koposov/15_files/image008.gif и http://elib.ispu.ru/library/lessons/Koposov/15_files/image009.gif (см. рис. 2) число событий, попадающих на один из них, не зависит от того, сколько событий попало на другой. Другими словами, это означает, что события, образующие поток, появляются в те или иные моменты времени независимо друг от друга и вызваны каждое своими собственными причинами.

Поток событий называется ординарным, если события в нем появляются поодиночке, а не группами по нескольку сразу.

Поток событий называется простейшим (или стационарным пуассоновским), если он обладает сразу тремя свойствами:

1) стационарен;

2) ординарен;

3) не имеет последствий.

Простейший поток имеет наиболее простое математическое описание. Он играет среди потоков такую же особую роль, как и закон нормального распределения среди других законов распределения. А именно, при наложении достаточно большого числа независимых, стационарных и ординарных потоков (сравнимых между собой по интенсивности) получается поток, близкий к простейшему.

Для простейшего потока с интенсивностью http://elib.ispu.ru/library/lessons/Koposov/15_files/image010.gif интервал T между соседними событиями имеет так называемое показательное (экспоненциальное) распределение с плотностью:

http://elib.ispu.ru/library/lessons/Koposov/15_files/image011.gif

где http://elib.ispu.ru/library/lessons/Koposov/15_files/image012.gif- параметр показательного закона.

Для случайной величины T, имеющей показательное распределение, математическое ожидание http://elib.ispu.ru/library/lessons/Koposov/15_files/image013.gif есть величина, обратная параметру, а среднее квадратичное отклонение http://elib.ispu.ru/library/lessons/Koposov/15_files/image014.gif равно математическому ожиданию:

http://elib.ispu.ru/library/lessons/Koposov/15_files/image015.gif

1.4 Уравнения Колмогорова для вероятностей состояний. Финальные вероятности состояний

Рассматривая Марковские процессы с дискретными состояниями и непрерывным временем, подразумевается, что все переходы системы S из состояния в состояние происходят под действием простейших потоков событий (потоков вызовов, потоков отказов, потоков восстановлений и т.д.). Если все потоки событий, переводящие систему S из состояния в состояние простейшие, то процесс, протекающий в системе, будет Марковским.

Итак, на систему, находящуюся в состоянии http://elib.ispu.ru/library/lessons/Koposov/15_files/image016.gif, действует простейший поток событий. Как только появится первое событие этого потока, происходит «перескок» системы из состояния http://elib.ispu.ru/library/lessons/Koposov/15_files/image017.gifв состояние http://elib.ispu.ru/library/lessons/Koposov/15_files/image018.gif(на графе состояний по стрелке http://elib.ispu.ru/library/lessons/Koposov/15_files/image019.gif).

Для наглядности на графе состояний системы у каждой дуги проставляют интенсивности того потока событий, который переводит систему по данной дуге (стрелке). http://elib.ispu.ru/library/lessons/Koposov/15_files/image020.gif - интенсивность потока событий, переводящий систему из состояния http://elib.ispu.ru/library/lessons/Koposov/15_files/image021.gif в http://elib.ispu.ru/library/lessons/Koposov/15_files/image022.gif. Такой граф называется размеченным. Для нашего примера размеченный граф приведен на рис. 3.

http://elib.ispu.ru/library/lessons/Koposov/15_files/image023.gif

Рис. 3. Размеченный граф состояний системы

На этом рисунке http://elib.ispu.ru/library/lessons/Koposov/15_files/image025.gif - интенсивности потока отказов; http://elib.ispu.ru/library/lessons/Koposov/15_files/image026.gif - интенсивности потока восстановлений.

Предполагаем, что среднее время ремонта станка не зависит от того, ремонтируется ли один станок или оба сразу. Т.е. ремонтом каждого станка занят отдельный специалист.

Пусть система находится в состоянии S0. В состояние S1 ее переводит поток отказов первого станка. Его интенсивность равна:

http://elib.ispu.ru/library/lessons/Koposov/15_files/image027.gif

где http://elib.ispu.ru/library/lessons/Koposov/15_files/image028.gif - среднее время безотказной работы первого станка.

Из состояния S1 в S0 систему переводит поток «окончаний ремонтов» первого станка. Его интенсивность равна:

http://elib.ispu.ru/library/lessons/Koposov/15_files/image029.gif

где http://elib.ispu.ru/library/lessons/Koposov/15_files/image030.gif - среднее время ремонта первого станка.

Аналогично вычисляются интенсивности потоков событий, переводящих систему по всем дугам графа. Имея в своем распоряжении размеченный граф состояний системы, строится математическая модель данного процесса.

Пусть рассматриваемая система S имеет http://elib.ispu.ru/library/lessons/Koposov/15_files/image031.gif-возможных состояний http://elib.ispu.ru/library/lessons/Koposov/15_files/image032.gif. Вероятность http://elib.ispu.ru/library/lessons/Koposov/15_files/image033.gif-го состояния http://elib.ispu.ru/library/lessons/Koposov/15_files/image034.gif - это вероятность того, что в момент времени http://elib.ispu.ru/library/lessons/Koposov/15_files/image035.gif, система будет находиться в состоянии http://elib.ispu.ru/library/lessons/Koposov/15_files/image036.gif. Очевидно, что для любого момента времени сумма всех вероятностей состояний равна единице:

http://elib.ispu.ru/library/lessons/Koposov/15_files/image037.gif

Для нахождения всех вероятностей состояний http://elib.ispu.ru/library/lessons/Koposov/15_files/image038.gif как функций времени составляются и решаются уравнения Колмогорова – особого вида уравнения, в которых неизвестными функциями являются вероятности состояний. Правило составления этих уравнений приведем здесь без доказательств. Но прежде, чем его приводить, объясним понятие финальной вероятности состояния.

Что будет происходить с вероятностями состояний при http://elib.ispu.ru/library/lessons/Koposov/15_files/image039.gif? Будут ли http://elib.ispu.ru/library/lessons/Koposov/15_files/image040.gif стремиться к каким-либо пределам? Если эти пределы существуют и не зависят от начального состояния системы, то они называются финальными вероятностями состояний.

http://elib.ispu.ru/library/lessons/Koposov/15_files/image041.gif

где http://elib.ispu.ru/library/lessons/Koposov/15_files/image042.gif - конечное число состояний системы.

Финальные вероятности состояний – это уже не переменные величины (функции времени), а постоянные числа. Очевидно, что:

http://elib.ispu.ru/library/lessons/Koposov/15_files/image043.gif

 

Финальная вероятность состояния http://elib.ispu.ru/library/lessons/Koposov/15_files/image044.gif – это по–существу среднее относительное время пребывания системы в этом состоянии.

Например, система S имеет три состояния S1, S2 и S3. Их финальные вероятности равны соответственно 0,2; 0,3 и 0,5. Это значит, что система в предельном стационарном состоянии в среднем 2/10 времени проводит в состоянии S1, 3/10 – в состоянии S2 и 5/10 – в состоянии S3.

Правило составления системы уравнений Колмогорова: в каждом уравнении системы в левой его части стоит финальная вероятность данного состояния http://elib.ispu.ru/library/lessons/Koposov/15_files/image045.gif, умноженная на суммарную интенсивность всех потоков, ведущих из данного состояния, а в правой его части – сумма произведений интенсивностей всех потоков, входящих в http://elib.ispu.ru/library/lessons/Koposov/15_files/image046.gif-е состояние, на вероятности тех состояний, из которых эти потоки исходят.

Пользуясь этим правилом, напишем систему уравнений для нашего примера:

http://elib.ispu.ru/library/lessons/Koposov/15_files/image047.gif.

Эту систему четырех уравнений с четырьмя неизвестными http://elib.ispu.ru/library/lessons/Koposov/15_files/image048.gif, казалось бы, можно вполне решить. Но эти уравнения однородны (не имеют свободного члена), и, значит, определяют неизвестные только с точностью до произвольного множителя. Однако можно воспользоваться нормировочным условием: http://elib.ispu.ru/library/lessons/Koposov/15_files/image049.gif и с его помощью решить систему. При этом одно (любое) из уравнений можно отбросить (оно вытекает как следствие из остальных).

Продолжение примера. Пусть значения интенсивностей потоков равны: http://elib.ispu.ru/library/lessons/Koposov/15_files/image050.gif.

Четвертое уравнение отбрасываем, добавляя вместо него нормировочное условие:

http://elib.ispu.ru/library/lessons/Koposov/15_files/image051.gif.

http://elib.ispu.ru/library/lessons/Koposov/15_files/image052.gif.

Т.е. в предельном, стационарном режиме система S в среднем 40% времени будет проводить в состоянии S0 (оба станка исправны), 20% - в состоянии S1 (первый станок ремонтируется, второй работает), 27% - в состоянии S2 (второй станок ремонтируется, первый работает), 13% - в состоянии S3 (оба станка ремонтируются). Знание этих финальных вероятностей может помочь оценить среднюю эффективность работы системы и загрузку ремонтных органов.

Пусть система S в состоянии S0 (полностью исправна) приносит в единицу времени доход 8 условных единиц, в состоянии S1 – доход 3 условные единицы, в состоянии S2 – доход 5 условных единиц, в состоянии S3 – не приносит дохода. Тогда в предельном, стационарном режиме средний доход в единицу времени будет равен: http://elib.ispu.ru/library/lessons/Koposov/15_files/image053.gif условных единиц.

Станок 1 ремонтируется долю времени, равную: http://elib.ispu.ru/library/lessons/Koposov/15_files/image054.gif. Станок 2 ремонтируется долю времени, равную: http://elib.ispu.ru/library/lessons/Koposov/15_files/image055.gif. Возникает задача оптимизации. Пусть мы можем уменьшить среднее время ремонта первого или второго станка (или обоих), но это нам обойдется в определенную сумму. Спрашивается, окупит ли увеличение дохода, связанное с ускорением ремонта, повышенные расходы на ремонт? Нужно будет решить систему четырех уравнений с четырьмя неизвестными.


Информация о работе «Система массового обслуживания с ограниченным временем ожидания»
Раздел: Математика
Количество знаков с пробелами: 48576
Количество таблиц: 0
Количество изображений: 16

Похожие работы

Скачать
45326
0
0

... и эффективным средством выработки оптимальных управленческий решений, главной особенностью которых в современных условиях становится их своевременность. 2 Применение теории массового обслуживания в экономическом анализе 2.1 Теория массового обслуживания Теория массового обслуживания – вероятностные модели реальных систем обслуживания населения, при которых время обслуживания будет ...

Скачать
39255
3
8

... остальных состояний системы. В результате получим систему уравнений: Решение этой системы будет иметь вид:  (4) , ,…,  (5)   4. Основные понятия и классификация систем массового обслуживания Заявкой (или требованием) называется спрос на удовлетворение какой-либо потребности (далее потребности предполагаются однотипными). Выполнение ...

Скачать
98051
44
0

... 2-3 Поиск литературы 7 1 7 2-4 Разработка модели разветвленной СМО 6 1 6 3 Поиск литературы завершен 3-6 Изучение литературы по теории массового обслуживания 10 1 10 4 Модель разработана 4-5 Разработка алгоритма программы 10 1 10 5 Алгоритм программы разработан 5-7 Выбор среды программиро-вания и создание программы 30 1 ...

Скачать
46164
1
11

... очередь длины k, остается в ней с вероятностью Pk и не присоединяется к очереди с вероятностью gk=1 - Pk,'. именно так обычно ведут себя люди в очередях. В системах массового обслуживания, являющихся математическими моделями производственных процессов, возможная длина очереди ограничена постоянной величиной (емкость бункера, например). Очевидно, это частный случай общей постановки. Некоторые ...

0 комментариев


Наверх