3. Из (33.1) следует
,
поскольку . Таким образом, справедливо равенство
. (33.5)
4. Поскольку , то из соотношения (33.5) следует
(33.6)
- равенство, которое называется условием нормировки. Его левая часть - это вероятность достоверного события.
5. Пусть , тогда из (33.1) следует
. (33.7)
Это соотношение имеет важное значение для приложений, поскольку позволяет вычислить вероятность через плотность вероятности или через функцию распределения вероятностей . Если положить , то из (33.7) следует соотношение (33.6).
На рис. 33.1 представлены примеры графиков функции распределения и плотности вероятностей.
Рис. 33.1. Примеры функции распределения вероятностей и плотности вероятности.
Отметим, что плотность распределения вероятности может иметь несколько максимумов. Значение аргумента , при котором плотность имеет максимум называется модой распределения случайной величины . Если плотность имеет более одной моды, то называется многомодальной.
Плотность распределения вероятностей дискретной случайной величиныПусть случайная величина принимает значения с вероятностями , . Тогда ее функция распределения вероятностей
, (34.1)
где - функция единичного скачка. Определить плотность вероятности случайной величины по ее функции распределения можно с учетом равенства . Однако при этом возникают математические сложности, связанные с тем, что функция единичного скачка , входящая в (34.1), имеет разрыв первого рода при . Поэтому в точке не существует производная функции .
Для преодоления этой сложности вводится -функция. Функцию единичного скачка можно представить через -функцию следующим равенством:
. (34.2)
Тогда формально производная
(34.3)
и плотность вероятности дискретной случайной величины определяется из соотношения (34.1) как производная функции :
. (34.4)
Функция (34.4) обладает всеми свойствами плотности вероятности. Рассмотрим пример. Пусть дискретная случайная величина принимает значения с вероятностями , и пусть , . Тогда вероятность - того, что случайная величина примет значение из отрезка может быть вычислена, исходя из общих свойств плотности по формуле:
.
Здесь
,
поскольку особая точка - функции, определяемая условием , находится внутри области интегрирования при , а при особая точка находится вне области интегрирования. Таким образом,
.
Для функции (34.4) также выполняется условие нормировки:
.
Отметим, что в математике запись вида (34.4) считается некорректной (неправильной), а запись (34.2) - корректной. Это обусловлено тем, что -функция при нулевом аргументе , и говорят, что не существует. С другой стороны, в (34.2) -функция содержится под интегралом. При этом правая часть (34.2) - конечная величина для любого , т.е. интеграл от -функции существует. Несмотря на это в физике, технике и других приложениях теории вероятностей часто используется представление плотности в виде (34.4), которое, во-первых, позволяет получать верные результаты, применяя свойства - функции, и во-вторых, имеет очевидную физическую интерпретацию.
Примеры плотностей и функций распределения вероятностей35.1. Случайная величина называется равномерно распределенной на отрезке , если ее плотность распределения вероятностей
(35.1)
где - число, определяемое из условия нормировки:
. (35.2)
Подстановка (35.1) в (35.2) приводит к равенству, решение которого относительно имеет вид: .
Функция распределения вероятностей равномерно распределенной случайной величины может быть найдена по формуле (33.5), определяющей через плотность:
(35.3)
На рис. 35.1 представлены графики функций и равномерно распределенной случайной величины.
Рис. 35.1. Графики функции и плотности распределения
равномерно распределенной случайной величины.
35.2. Случайная величина называется нормальной (или гауссовой), если ее плотность распределения вероятностей:
, (35.4)
где , - числа, называемые параметрами функции . При функция принимает свое максимальное значение: . Параметр имеет смысл эффективной ширины . Кроме этой геометрической интерпретации параметры , имеют и вероятностную трактовку, которая будет рассмотрена в последующем.
Из (35.4) следует выражение для функции распределения вероятностей
, (35.5)
где - функция Лапласа. На рис. 35.2 представлены графики функций и нормальной случайной величины. Для обозначения того, что случайная величина имеет нормальное распределение с параметрами и часто используется запись .
Рис. 35.2. Графики плотности и функции распределения
нормальной случайной величины.
35.3. Случайная величина имеет плотность распределения вероятностей Коши, если
. (35.6)
Этой плотности соответствует функция распределения
.
(35.7)
35.4. Случайная величина называется распределенной по экспоненциальному закону, если ее плотность распределения вероятностей имеет вид:
(35.8)
Определим ее функцию распределения вероятностей. При из (35.8) следует . Если , то
. (35.9)
... . Г. Моделирование случайной величины с нормальным распределением. Случайная величина имеет нормальный закон распределения, если ее функция распределения имеет вид: , где и — параметры. Для компьютерного моделирования случайной величины с нормальным законом распределения можно использовать как метод обратных функций, так и метод, специально разработанный для нормального закона. Согласно ...
... , очень мала и равна 0,0027. Такие события считаются практически невозможными. В этом и состоит правило «трех сигм»: если случайная величина распределена по нормальному закону, то ее отклонение от математического ожидания практически не превышает±3σ. Понятие о теоремах, относящихся к группе «центральной предельной теоремы» В теоремах этой группы выясняются условия, при которых возникает ...
... критических точек распределения ([1], стр. 465), по уровню значимости =0,05 и числу степеней свободы 8-3=5 находим Т.к. , экспериментальные данные не противоречат гипотезе и о нормальном распределении случайной величины . Для случайной величины : Используя предполагаемый закон распределения, вычислим теоретические частоты по формуле , где - объем выборки, - шаг (разность между ...
... Впрочем, для наиболее распространённых псевдослучайных чисел период столь велик, что превосходит любые практические потребности. Подавляющее большинство расчётов по методу Монте-Карло осуществляется с использованием псевдослучайных чисел. Значения любой случайной величины можно получить путём преобразования значений одной какой-либо случайной величины. Обычно роль такой случайной величины играет ...
0 комментариев