2. Теорема Лагранжа

Результаты теоремы Ролля используются при рассмотрении следующей теоремы о среднем, принадлежащей Лагранжу (1736–1813).

Теорема. Если функция  непрерывна на отрезке  и дифференцируема во всех его внутренних точках, то существует, по крайней мере, одна точка , в которой .

Доказательство. Рассмотрим график функции  (рис. 2.1).

Проведем хорду, соединяющую точки  и , и запишем ее уравнение. Воспользовавшись уравнением прямой, проходящей через две точки на плоскости, получим:

,

откуда:


Рис. 2.1

 и .

Составим теперь вспомогательную функцию, вычтя из уравнения кривой уравнение хорды:

.

Полученная функция  непрерывна на отрезке  и дифференцируема во всех его внутренних точках. Кроме того, вычисление  в точках  и  показывает, что . Значит, функция  на отрезке  удовлетворяет требованиям теоремы Ролля. Но в этом случае существует такая точка , в которой .

Вычислим производную функции :

.

Согласно теореме Ролля в точке  производная , то есть  и


,

что и требовалось доказать.

Геометрический смысл теоремы Лагранжа следующий: внутри отрезка  существует, по крайней мере, одна точка, в которой касательная параллельна хорде, стягивающей кривую на данном отрезке. В частности, при  теорема переходит в теорему Ролля.

Теорему Лагранжа часто записывают в следующем виде:

,

то есть приращение функции равно приращению аргумента, умноженному на производную функции в некоторой внутренней точке. В связи с этим теорему Лагранжа называют также теоремой о конечных приращениях.

3. Теорема Коши

Рассмотрим, наконец, третью теорему о среднем, принадлежащей Коши (1789–1859), которая является обобщением теоремы Лагранжа.

Теорема. Если функции  и  непрерывны на отрезке  и дифференцируемы во всех его внутренних точках, причем  не обращается в ноль ни в одной из указанных точек, то существует, по крайней мере, одна точка , в которой .

Доказательство. Так как  во всех точках , то отсюда следует, что . В противном случае, как следует из теоремы Ролля, существовала хотя бы одна точка , в которой .

Составим вспомогательную функцию

.

Данная функция непрерывна на отрезке  и дифференцируема во всех его внутренних точках. Кроме того, вычисление ее в точках  и  дает: . Значит, функция  удовлетворяет требованиям теоремы Ролля, то есть существует хотя бы одна точка , в которой .

Вычислим производную :

.

Из условия  следует, что

 и ,

что и требовалось доказать.

В случае, когда , теорема Коши переходит в формулировку теоремы Лагранжа.


Информация о работе «Теоремы Ролля, Коши, Лагранжа. Правило Лопиталя»
Раздел: Математика
Количество знаков с пробелами: 6687
Количество таблиц: 0
Количество изображений: 3

Похожие работы

Скачать
18655
0
5

... типов неопределенностей. Примеры для этого и последующего раздела были взяты из [Марон]. В четвертом разделе приведен вывод формулы Тейлора и показано применение формулы Тейлора для нахождения эквивалентных функций и вычисления пределов. 1. Бесконечно малые и их сравнения; символы "o малое" и "о большое"   Определение. Бесконечно малой в x0 называется функция f (x) такая, что Свойства ...

Скачать
56527
0
0

рема Ферма: Если функция у=f(х) имеет в точке х0 локальный экстремум и дифференцируема в этой точке, то ее производная f'(х0) равна нулю. Док-во: Проведем его для случая максимума в точке х0. Пусть (х0-d, х0+d) - та окрестность, для точек которой выполняется неравенство Здесь возможно как 1 и 2 варианты, но | ∆х| <δ При ∆х>0, будет ∆y:∆x ...

Скачать
46169
0
217

... и докажите сходимость полученного разложения к порождающей функции. Исследовать на абсолютную и условную сходимость . Зав. кафедрой -------------------------------------------------- Экзаменационный билет по предмету МАТЕМАТИЧЕСКИЙ АНАЛИЗ Билет № 12 Сформулируйте теорему Ролля и объясните ее геометрический смысл. Исследуйте функцию на выпуклость и вогнутость. Какая ...

Скачать
11532
0
0

... вытекает, что f'(c)=0. #30 Теорема (Ролля). Если функция y=f(x) непре­рывна на [а, b], дифференцируема на (а, b) и f (а) ==f(b), то существует точка c0(а,b), такая, что f'(c)=0. Доказательство. Если f постоянна на [а, b], то для всех c(a, b) производная f'(c)=0. Будем теперь считать, что f непостоянна на [а, b]. Так как f непрерывна на [а, b], то существует точка x1 [а, ...

0 комментариев


Наверх