1.2. Дистрибутивные решетки.
Пусть L – произвольное множество. Введем на L отношение положив,
.
Отношением порядка называется рефлексивное, транзитивное, антисимметричное бинарное отношение на множестве L, при этом множество L назовем частично упорядоченным множеством.
Отношение на множестве L является отношением порядка.
Пусть M – непустое подмножество частично упорядоченного множества L . Нижней гранью множества M называется такой элемент , что для любого . Нижняя грань m множества M называется точной нижней гранью, если , где n – произвольная нижняя грань множества M. Двойственным образом определяется точная верхняя грань.
Частично упорядоченное множество L называется решеткой, если любые два элемента имеют точную верхнюю и точную нижнюю грани; решетка называется дистрибутивной, если в ней выполняются дистрибутивные законы:
Кроме этого определения существует еще одно определение дистрибутивной решетки. Алгебраическая система L с двумя бинарными операциями сложения + и умножения ∙ называется решеткой, если (L, +) и (L,∙) являются идемпотентными коммутативными полугруппами и операции связаны законами поглощения
,;
Решетка называется дистрибутивной, если для любых , ограниченной, если она имеет 0 и 1.
1.3. Идеалы полуколец.
Непустое подмножество I полукольца S называется левым (правым) идеалом полукольца S, если для любых элементов a, bI, sS элементы a+b и sa (as) принадлежат I.
Непустое подмножество, являющееся одновременно левым и правым идеалом, называется двусторонним идеалом или просто идеалом полукольца. Идеал, отличный от полукольца S называется собственным. Наименьший из всех (левых) идеалов, содержащий элемент a S, называется главным (главным левым) идеалом, порожденным элементом a. Обозначается (a) или SaS, односторонние Sa и aS – левый и правый соответственно. Множество всех элементов принадлежащих главному идеалу можно записать так .
Собственный идеал M полукольца S называется максимальным (максимальным правым) идеалом, если влечет M=A или A=S для каждого идеала A .
Примерами идеалов могут служить следующие подмножества:
1. {0} – нулевой идеал;
2. S – идеал, совпадающий со всем полукольцом;
3. Идеал на полукольце : ;
4. Главный идеал ограниченной дистрибутивной решетки L, порожденный элементом a: .
Глава II «Положительные и ограниченные полукольца».
2.1. Определение, примеры и основные свойства.
Полукольцо S с 1 называется положительным, если для любого элемента а S элемент а+1 обратим в S, т.е..
Примерами положительных полуколец служат следующие алгебраические системы:
1. ограниченные дистрибутивные решетки;
2. полукольца непрерывных R+ - значных функций;
3. множество всех идеалов полукольца, с операциями сложения и умножения.
Полукольцо S называется ограниченым, если для любого выполняется . Ограниченное полукольцо – частный случай положительного полукольца.
Примеры ограниченных полуколец:
1. ограниченные дистрибутивные решетки;
2. множество всех идеалов полукольца, с операциями сложения и умножения.
2.1.Основные свойства положительных и ограниченных полуколец:
I. Для полукольца S следующие условия равносильны:
1. S – положительное полукольцо;
2. для любого максимального одностороннего идеала M в S и любых a и b S
(a+b M) (a M & b M).
Доказательство:
12. Пусть для произвольных и максимального правого идеала M. Предположим, что , тогда и для некоторых и . Имеем:
.
В левой части последнего равенства – элемент из M, тогда как в правой части обратимый справа элемент; противоречие.
21. Пусть выполнено 2 и с – произвольный элемент из S. Элемент 1+с не лежит ни в одном максимальном одностороннем идеале полукольца S (т.к. в противном случае в силу условия 2 в идеале должен лежать элемент 1, противоречие), значит, 1+с обратим.
II. В положительном полукольце S справедливы импликации:
Доказательство. Пусть . Поскольку S положительно, то для x+1 найдется некоторый , такой что . Тогда
,т.к.. Получили y=1 и значит .
Таким образом мы доказали, если положительное полукольцо мультипликативно идемпотентно, то оно ограниченно,
Теперь, пусть , тогда ,т.е. такое полукольцо еще и аддитивно идемпотентно.
Поскольку выполняется для , то для x=1, также выполняется. Обратно, 1+1=1, помножим обе части на x и получим необходимое равенство.
III . Полукольцо S положительно тогда и только тогда, когда для любого элемента и любого обратимого элемента элемент обратим.
Доказательство.
Полукольцо положительно, следовательно, элемент - обратим. Умножим обратимый элемент на обратимый, получим обратимый.
В левой части обратимый элемент, значит и в правой элемент тоже обратим.
и – обратимы, тогда их произведение также обратимо , значит обратим.
IV . Для коммутативного положительного полукольца S равносильны следующие условия:
... S с 1 изоморфно прямому произведению кольца и антикольца тогда и только тогда, когда его идеал R(S) имеет единичный элемент, коммутирующий с каждым элементом из S [1]. 3. Полукольцо S служит 0-расширением кольца с помощью полутела тогда и только тогда, когда идеал R(S) полульца S простой (т.е. abÎR(S) влечет aÎR(S) или bÎR(S)). 4. Для полукольца S с 1 фактор-полукольцо S/R(S) ...
... Фк = 365 × 24 = 8760 ч Номинальный фонд времени – это количество часов в году в соответствии с режимом работы без учета потерь. Так как термическое отделение высокотемпературного отжига анизотропной электротехнической стали работает непрерывно, то номинальный фонд равен полному календарному, то есть Фн = Фк = 8760 ч. Действительный фонд времени равен тому времени, которое может быть ...
... дела как нельзя лучше играла на руку вредителям». (Мордвинов А.Г. «Искусство в массы», 1930, №12. От редакции «Современная архитектура», 1930, №5, стр. 2—3). 4. Коммуна и человек. Жилые дома и клубы Теперь перейдем к конкретным постройкам в Москве 1920-х годов. В первую очередь надо было решать жилищную проблему. Жилищное строительство после нескольких лет разрухи и гражданской войны ...
... и отпуска холодных блюд 10-14С; - повар обязательно следит за чистотой своего места. Отходы собираются в специальный отдельный бак и выносятся два раза в день. 3.4 Организация работы овощного цеха В столовой овощной цех находится рядом с кладовой овощей. Овощные полуфабрикаты поступают в горячий и холодный цеха, где и завершается выпуск готовой продукции. Технологический процесс ...
0 комментариев