2.4 Различные модели плоскости Лобачевского. Независимость 5-го постулата Евклида от остальных аксиом Гильберта
В предыдущем параграфе познакомились с основными формулами двухмерной геометрии Лобачевского, которые в то же время были формулами геометрии сферы чисто мнимого радиуса в псевдоевклидовом пространстве.
Эта сфера, по существу, есть одна из возможных моделей плоскости Лобачевского. Другая модель - модель Бельтрами-Клейна. Она получилась из первой модели путем центрального проектирования точек сферы на какую-нибудь ее касательную плоскость. Последняя, очевидно, будет евклидовой плоскостью.
Плоскость Лобачевского в модели Бельтрами-Клейна изображается в виде внутренности круга, причем прямые изображаются хордами. Пересекающиеся прямые изображаются пересекающимися хордами. Если общая точка будет стремиться по одной из прямых к бесконечности, то параллельные прямые будут изображаться хордами, общая точка которых принадлежит абсолюту (ограничивающей внутренность круга окружности). Наконец, сверхпараллельные прямые в рассматриваемой модели изображаются хордами, которые, будучи продолжены, пересекутся в точке, принадлежащей внешней области абсолюта.
Нетрудно убедиться, что пучок прямых первого рода при Данном отображении переходит в совокупность хорд, пересекающихся в общей точке, принадлежащей внутренности абсолюта. Пучок прямых второго рода, т. е. прямых, параллельных друг другу в данном направлении, переходит в совокупность хорд, пересекающихся в некоторой точке абсолюта. Наконец, пучок прямых третьего рода отображается в совокупность хорд, пересекающихся в некоторой точке вне абсолюта. Точки абсолюта называются бесконечно удаленными точками и точки вне абсолюта - идеальными точками плоскости Лобачевского. Поэтому пучки прямых второго и третьего родов называются иногда пучками с бесконечно удаленными или соответственно идеальными центрами.
Нетрудно убедиться также, что ось пучка прямых третьего рода является полярой полюса - своего идеального центра. В самом деле, допустим, что ось пучка не является полярой идеального центра. Предположим, например, что она не проходит через точку пересечения поляры точки Р с абсолютом. Тогда на плоскости Лобачевского будет существовать прямая СС1 одновременно перпендикулярная и параллельная к прямой СВ, что невозможно.
Перенося по отображению во внутренность абсолюта основные понятия отображаемой плоскости Лобачевского, в итоге получим так называемую модель Бельтрами-Клейна.
Ясно, что к модели Бельтрами-Клейна можно прийти непосредственной проверкой аксиом Гильберта I-IV и аксиомы параллельности Лобачевского во множестве точек внутренности круга и его хорд, вводя между ними соответствующим образом основные отношения. Точками и прямыми в этой модели являются внутренние точки абсолюта и его хорды без концов. „Инцидентность" точек и прямых, а также „между" для трех точек, принадлежащих одной прямой, понимаются в обычном смысле. Два отрезка (угла) считаются конгруентными, если они будут соответствующими при некотором взаимно однозначном точечном отображении расширенной (за счет добавления несобственной прямой) евклидовой плоскости, при котором абсолют остается неизменными „прямые" переходят в „прямые".
В модели Бельтрами-Клейна длины и углы искажаются, если рисунки 23, 24 понимать в евклидовом смысле.
В рассматриваемой модели через точку А, данную вне прямой а, можно провести прямые, которые пересекают прямую а; прямые АU, АV, параллельные а и, наконец, прямые b - сверхпараллельные, располагающиеся во внутренности заштрихованных вертикальных углов. В этой модели выполняются все аксиомы Гильберта, в том числе и аксиома Лобачевского. Расстояние d(А, В) между двумя точками A, В в модели Бельтрами-Клейна выражаются при помощи проективных понятий. Если хорда АВ пересекает абсолют в точках М, N, то
где (ABMN) обозначает двойное отношение указанных четырех точек (АМ: ВМ): (АN: BN). В самом деде, предположим, что
(4.1)
является уравнением абсолюта в однородных координатах. Кроме того, по условию нам даны точки А(аi) и В(bi). Составляя уравнение прямой АВ, получим
(4.2)
Чтобы найти точки пересечения М, N, прямой АВ с абсолютом, решим совместно систему уравнений (4.1) и (4.2) относительно неизвестных . Вставляя из равенства (4.2) в уравнение (4.1), получим
. (4.3)
Развертывая более подробно левую часть (4.3), будем иметь
.
Так как точка А (аi) не принадлежит абсолюту, т. е. , то решая квадратное уравнение
найдем следующие значений отношения , для искомых точек:
С другой стороны, как известно, двойное отношение четырех точек А, B, М, N равно двойному отношению, составленному из соответствующих значений параметра , поэтому
Но это равенство можно переписать в виде
(4.4)
Вставляя в правую часть (4.4) найденные выражения , и учитывая (3.21), получим
Так как по определению
то предыдущее равенство можно переписать так:
Логарифмируя это равенство, имеем окончательно
(4.5)
Эта формула показывает, что расстояние между двумя точками А и В равняется с точностью до множителя двойному отношению данных точек А, В и точек М, N пересечения прямой АВ с абсолютом.
Угол между двумя лучами а, b, выходящими из точки С, также выражается через проективные понятия комплексной геометрии, Пусть т, n обозначают касательные к абсолюту, проходящие через точку С. Заметим, что прямые m, n необходимо комплексно сопряжены. Аналогично предыдущей формуле имеем
Модель Бельтрами-Клейна примечательна тем, что прямые плоскости Лобачевского в ней изображаются в виде открытых отрезков прямых евклидовой плоскости. Она осуществляет геодезическое отображение плоскости Лобачевского на внутренность круга евклидовой плоскости.
Прежде чем перейти к другим моделям плоскости Лобачевского нужно сделать следующие два важных замечания. Во-первых, к модели Бельтрами-Клейна можно прийти на основе отображения плоскости Лобачевского на предельную поверхность, на которой осуществляется евклидова геометрия. Поэтому аксиомы геометрии Лобачевского здесь выполняются автоматически по отображению. Но приведенное здесь описание по отображению основных понятий позволяет в свою очередь прийти к этой модели самостоятельным образом, на основе доказательства выполнимости последовательно каждой аксиомы I — IV, V.
Во-вторых, к этой же модели Бельтрами-Клейна можно прийти, очевидно, проектированием в пространстве Минковского сферы чисто мнимого радиуса из ее центра на касательную к ней плоскость, например, в северном полюсе.
Предположим теперь, что абсолют с центром О модели Бельтрами-Клейна является большим кругом сферы. Ортогональное проектирование внутренности абсолюта на одну из полученных полусфер позволяет получить новую модель плоскости Лобачевского на полусфере. Затем стереографическое проектирование этой полусферы на исходную плоскость из полюса S, расположенного в другой полусфере, где отрезок OS перпендикулярен плоскости абсолюта, приводит к модели Пуанкаре внутри круга. Следовательно, в прежнем абсолюте прямыми теперь являются дуги окружностей, ортогонально пересекающие абсолют и диаметры абсолюта. Отношения инцидентности, лежать между и конгруентности углов имеют обычный смысл. Понятие конгруентности отрезков также соответствующим образом переносится из модели Бельтрами-Клейна.
Применяя затем дробно-линейное отображение комплексного переменного к внутренней области абсолюта, получим известную модель Пуанкаре на полуплоскости. В этой модели «точками» являются точки верхней полуплоскости, «прямыми» - полуокружности с центром на граничной прямой - абсолюте. К «прямым» причисляются также, полупрямые верхней полуплоскости, перпендикулярные к абсолютной прямой. Отношения инцидентности и лежать между понимаем в обычном смысле. Конгруентность углов в этой модели совпадает с евклидовой конгруентностью. Модель Пуанкаре представляет собою конформное отображение плоскости Лобачевского на евклидову полуплоскость.
Что касается понятия конгруентности отрезков, то оно определяется через движения или расстояние между двумя точками А и В, причем понятие расстояния между точками в последнем случае не предполагает измерения отрезков. По определению оно означает число.
(*)
если точки A, В лежат на полуокружности или число
(**)
если точки лежат на полупрямой, перпендикулярной граничной прямой XX. В этих формулах углы , и ординаты у1 , у2 имеют обычный смысл, ясный из рисунка 29,д.
Очевидно, всегда можем предполагать, что обозначение углов символами , и ординат у1, у2 для данных точек A, В осуществлено так, что правые части в (*), (**) положительны. Теперь нетрудно определяется конгруентность отрезков. Отрезки АВ и СD конгруентны, если расстояние между концами A, В одного отрезка равно расстоянию между концами С, D другого отрезка.
Подчеркнем еще раз, что к модели Пуанкаре на полуплоскости мы пришли в результате отображения первой модели Пуанкаре во внутренности круга. Поэтому аксиомы Гильберта геометрии Лобачевского выполняются автоматически по отображению.
Приводимые здесь описания основных образов и отношений инцидентности, лежать между, конгруентности отрезков и углов позволяют прийти к этой модели Пуанкаре на полуплоскости самостоятельным образом, путем доказательства выполнимости каждой аксиомы гильбертовской аксиоматики.
В заключение остановимся на вопросе независимости 5-го постулата Евклида от остальных аксиом Гильберта. Согласно общей установке, изложенной в главе 1, достаточно построить какую-нибудь модель, на которой бы выполнялись все аксиомы Гильберта I - V за исключением аксиомы параллельности V. Аксиома эта, эквивалентная относительно аксиом I - IV утверждению 5-го постулата, состоит в следующем. Через точку А, не принадлежащую прямой а, можно провести в плоскости, определяемой этой точкой А и прямой а, не более одной прямой, не пересекающейся с данной прямой a.
Очевидно, любая модель геометрии Лобачевского, например, Бельтрами-Клейна позволяет доказать независимость аксиомы параллельности от предыдущих аксиом I - IV. Действительно, на этой модели выполняются все 19 аксиом I - IV, а аксиома V не выполняется. Отсюда заключаем, что при помощи аксиом I - IV, Гильберта невозможно доказать аксиому параллельности V. Другими словами, 5-й постулат Евклида нельзя вывести как теорему из предыдущих аксиом I - IV.
Заключение
Открытие неевклидовой геометрии, начало которому положил Лобачевский, не только сыграло огромную роль в развитии новых идей и методов в математике естествознании, но имеет и философское значение. Господствовавшее до Лобачевского мнение о незыблемости геометрии Евклида в значительной мере основывалось на учении известного немецкого философа И. Канта (1724-1804), родоначальника немецкого классического идеализма. Кант утверждал, что человек упорядочивает явления реального мира согласно априорным представлениям, а геометрические представления и идеи якобы априорны (латинское слово aprior означает – изначально, заранее), то есть, не отражают явлений действительного мира, не зависят от практики, от опыта, а являются врожденными человеческому миру, раз и навсегда зафиксированными, свойственными человеческому разуму, его духу. Поэтому, Кант считал, что Евклидова геометрия непоколебима, неизменна, и является вечной истиной. Еще до Канта геометрия Евклида считалась незыблемой, как единственно возможное учение о реальном пространстве.
Открытие неевклидовой геометрии доказало, что нельзя абсолютировать представления о пространстве, что «употребительная» (как назвал Лобачевский геометрию Евклида) геометрия не является единственно возможной, однако это не подорвало незыблемость геометрии Евклида. Итак, в основе геометрии Евклида лежат не априорные, врожденные уму понятия и аксиомы, а такие понятия, которые связаны с деятельностью человека, с человеческой практикой. Только практика может решить вопрос о том, какая геометрия вернее излагает свойства физического пространства. Открытие неевклидовой геометрии дало решающий толчок грандиозному развитию науки, способствовало и поныне способствует более глубокому пониманию окружающего нас материального мира.
Список литературы
1. Большая Советская Энциклопедия, Гл. Ред.: А. М. Прохоров, издание 3-е, Москва, Советская Энциклопедия, 1969.
2. Глейзер Г.И. История математики в школе IX – X классы. Пособие для учителей. Москва, Просвещение 1983.
3. Даан Дальмедино А., Пейффер И. Пути и лабиринты. Очерки по истории математики. Перевод с французского. М: Мир.1986г.
4. Егоров И.П. Лекции по аксиоматике Вейля и неевклидовым геометриям, Рязань, 1973Ефимов Н.В., Высшая геометрия, Наука, М.,1971.
5. Егоров И. П. «Основания геометрии», М., «Просвещение», 1984.
6. Квант №11,№12 Академик АН СССР А.Д. Александров, Интернет-издания.
7. Клайн М., Математика. Утрата определенности, Мир, М., 1984
8. Лаптев Б.Л. Н.И. Лобачевский и его геометрия. Пособие для учащихся. М. Просвещение, 1970.
9. Математика XIX века, Наука, М., 1981.
10. Неевклидовы пространства и новые проблемы физики, Белка, М., 1993.
11. Розенфельд Б.А. Неевклидовы пространства, М., Наука,1969.
12. Широков П.А. Краткий очерк основ геометрии Лобачевского, М., 1955.
13. Юшкевич А.П., История математики в России, Наука, М., 1968.
14. Яглам И.М. Принцип относительности Галилея и неевклидова геометрия. Серия Библиотека математического кружка М: 1963.
[1] Под термином «прямая пересекает отрезок» мы подразумеваем, что указанная прямая содержит некоторую внутреннюю точку этого отрезка.
1 Из этой аксиомы вытекает возможность перемещения отрезка АВ вдоль прямой, на которой он лежит (с сохранением его длины и направления). Будем говорить, что направленный отрезок получен в результате перемещения направленного отрезка , если отрезок CD конгруэнтен отрезку АВ и если либо отрезок AD лежит внутри отрезка ВС, либо отрезок ВС лежит внутри отрезка AD.
... 3. Б.Л. Лаптев. Н.И. Лобачевский и его геометрия. Пособие для учащихся. М. «Просвещение», 1970г. 4. И.М. Яглам. Принцип относительности Галилея и неевклидова геометрия.Серия «Библиотека математического кружка» М: 1963г. Приложение 1 Николай Иванович Лобачевский, второй сын мелкого чиновника, родился 1 декабря(20 ...
... представить другие геометрии Кант счел достаточным основанием, чтобы утверждать, что другие геометрии не могут существовать. Появление неевклидовой геометрии Но многовековые попытки доказательства пятого постулата Евклида привели в конце концов к появлению новой геометрии, отличающейся от евклидовой тем, что в ней V постулат не выполняется. Эта геометрия теперь называется неевклидовой, а в ...
... всех фундаментальных положений классической космологии. Общая теория относительности отождествила гравитацию с искривлением четырёхмерного пространства-времени. Чтобы построить работающую относительно несложную модель, учёные вынуждены ограничить всеобщий пересмотр фундаментальных положений классической космологоии: общая теория относительности дополняется космологическим постулатом однородности ...
... целых три доказательства V постулата, ошибочность которых быстро показали его современники. Последнее «доказательство» он опубликовал в 1823 году, за три года до первого доклада Лобачевского о новой геометрии. Открытие неевклидовой геометрии В первой половине XIX века по пути, проложенному Саккери, пошли сразу три математика: К.Ф. Гаусс, Н.И. Лобачевский и Я. Бойяи. Но цель у них была уже иная ...
0 комментариев