2.2.1 Производство и хранение серы
Кислый газ, полученный на установке регенерации метилдиэтаноламина линии очистки газа от серы, очищается для получения чистой серы и для обеспечения соблюдения нормативов Республики Казахстан по выбросам в атмосферу. Основными компонентами этой системы являются следующие установки:
- установка производства серы;
- установка очистки хвостовых газов;
- установка дегазации жидкой серы;
- установка формирования серы;
- оборудование отгрузки и хранения серы.
Кислый газ обрабатывается на установках производства серы и обработке хвостового газа. Установка серы представляет из себя установку Клауса (Claus) с тремя каталитическими ступенями. Примерно одна треть поступающего в сырье Н2S окисляется до образования SO2 и воды. После этого SO2 с оставшимся Н2S образует элементарную серу и водяные пары.
Хвостовой газ с установки Клауса поступает на очистку для окончательного отделения серы на 99,5% (гарантированный минимум 99,4%). При расчете производства серы учитывались потери серосодержащего пара на последней стадии обработки при сжигании в печи перед дымовой трубой.
Полученная жидкая сера дегазируется на установке производства серы и затем, чтобы обеспечить удобство при отгрузке и транспортировании, гранулируется на установке формирования серы.
2.3 Разработка технологии очистки природного газа КНГКМ
В последнее десятилетие, после приобретение Казахстаном суверенитета, нефтегазовая отрасль промышленности очень бурно развивается. Правительством Республики Казахстан ведется постоянная работа по привлечению в эту отрасль новых инвестиций. Привлечение инвестиций в разведку, добычу и транспортировку конденсата приведет к увеличению объема добычи нефти, газа и конденсата.
Известно, что все крупные залежи нефти, газа и конденсата (Тенгиз, Карачаганак и др.) наряду с основным компонентом содержат повышенное количество кислых компонентов, в частности, сероводород.
Наличие кислых компонентов в составе добываемой продукции создает определенные сложности в их транспортировании и переработке, вызывая коррозию трубопроводов и оборудования. Наряду с этим при транспортировке сырой продукции покупателям (перерабатывающим заводам за пределами Республики Казахстан) достается ценнейшее сырье для получения товарной серы.
Хотя Карачаганакское месторождение газа и конденсата находится на территории Бурлинского района Западно-Казахстанской области, потребители газа этого региона получают газ из Российской Федерации, что приводит к увеличению цены на газ. Карачаганак, при развитии собственной инфраструктуры и создании собственных очистных и перерабатывающих мощностей, может обеспечивать регион собственным газом.
Создание очистной установки газа от сероводорода позволило бы снизить объем вредных выбросов в локальном характере (выброс SO2 при сжигании Н2S на факеле) и уменьшить риск попадания Н2S в окружающую природную среду во время аварийных ситуаций при транспортировке газа и конденсата по трубопроводам.
Также при извлечении сероводорода казахстанские нефтяники и газовики получили бы еще одно ценное сырье для производства и получения готовых продукций для нужд промышленности (Н2SO4, элементарная сера и др.). Получение еще одной готовой продукции дало бы новый источник увеличения прибыли отечественных производителей.
2.3.1 Выбор метода очистки
При выборе метода очистки окончательным критерием является величина приведенных затрат, зависящих в основном от энергетических и капитальных затрат. Однако такой выбор во многих случаях труден, что объясняется влиянием на экономические показатели трех групп факторов:
1) внешние технологические параметры процесса /8/ - состав, давление и температура очищаемого газа, требуемая степень очистки, параметры энергоресурсов (давление пара, наличие отбросного тепла), возможность использования вторичных энергоресурсов и т.д., то есть факторы, независящие от аппаратурно-технологического оформления процесса очистки;
2) внутренние параметры процесса – расход тепла, электроэнергии, растворителя, отходы, тип и вес аппаратуры, а также их зависимость от параметров исходного газа и степени очистки, то есть параметры, на которые влияет аппаратурно-технологическое оформление процесса очистки.
3) экономические факторы – цены на энергоресурсы, сырье, отходы, аппаратуру, а также дефицитность каких-либо видов сырья (растворителей и др.) и энергии.
Таким образом, выбор процесса должен осуществляться только после детального технологического, термодинамического и технико-экономического анализа.
Особенности газоочистных и газоперерабатывающих установок выдвигают ряд требований к их проектированию:
большой диапазон устойчивой работы (отношение максимально и минимально допустимых нагрузок по газу и жидкости) оборудования;
получение кондиционной товарной продукции при изменении параметров сырья в широком интервале;
возможность использования оборудования в широком интервале давления и температуры. Это важно как ввиду влияния температуры окружающей среды на параметры процесса, так и из-за необходимости компенсации влияния изменения одного параметра (Р или t) на показатели процесса, за счет повышения или понижения значения другого параметра.
При определении области предположительного использования различных способов очистки для газов, в которых соотношение СО : Н2S более 3-3,5, следует использовать методы, основанные на физической абсорбции Н2S. При выборе того или иного поглотителя необходимо учитывать не только способность растворять углеводородные газы, летучесть, дефицитность, селективность по отношению к Н2S, емкость по нему, упругость паров сернистых соединений в конкретном поглотителе. При минимальных теплотах растворения можно достичь максимальных соотношений Н2S : СО2, при которых энергетически целесообразно проводить процесс очистки физическими поглотителями. Согласно физико-химической природе поглотителей, с уменьшением теплоты растворения увеличивается упругость паров увлекаемого компонента над раствором, что видно из следующей термодинамической зависимости:
(2.1)
где К – константа Генри газа в растворителе;
А – коэффициент, зависящий от давления и температуры;
∆Н – теплота растворения газа;
R – универсальная газовая постоянная;
Т – температура растворения.
Уравнение (2.1) показывает, что с увеличением теплоты растворения уменьшается константа Генри (растет растворимость), а это в конечном итоге приводит к повышению степени очистки или понижению расхода абсорбента. В связи с этим не во всех случаях целесообразно стремиться к выбору абсорбента с минимальной теплотой растворения сернистых соединений.
Необходимо учитывать селективность поглотителя. Это связано с тем, что соотношение СО2 : Н2S в исходном газе характеризует кислые газы регенерации. Поэтому чем выше селективность, тем большую область охватывают методы очистки физической абсорбцией. Следовательно, при выборе физического поглотителя необходимо решать оптимизационную задачу с учетом перечисленных показателей.
Результаты опытных работ показали, что такие нежелательные компоненты, как Н2S и СО2, органические соединения, присутствующие в составе природного газа Карачаганакского месторождения, хорошо поглощаются метанолом, особенно при низких температурах /8, 9, 10/.
Предлагаемая в данной работе технология очистки газа основана на процессе одновременного удаления кислых компонентов. Как сказано выше, эти вещества хорошо абсорбируются метанолом, особенно при низких температурах и повышенных давлениях, а при понижении давления легко удаляются из насыщенного раствора.
Зависимость растворения СО2 и Н2S в метаноле от температуры при различных давлениях приведена на рисунках 4 и 5, из которых видно, что растворимость Н2S в метаноле выше растворимости СО2 в нем. Это позволяет осуществлять селективное их разделение. Наличие в метаноле СО2 снижает растворимость Н2S на 10-15%. Растворимость органических сернистых соединений в метаноле также велика. Расход тепла на процесс весьма невелик, так как поглотительный растворитель охлаждается вследствие снижения давления на ступени регенерации, а поступающий газ охлаждается с широким использованием теплообмена с отходящими потоками очищенного газа и извлекаемых компонентов газа.
К основным преимуществами этого процесса следует отнести:
а) значительное снижение расхода энергии по сравнению с другими методами очистки (например, абсорбция этаноламинами);
б) высокая степень очистки от сернистых соединений в присутствии СО2;
1 – РН2S = 53 кПа; 2 - РН2S = 40 кПа; 3 - РН2S = 26,7 кПа
4 - РН2S = 17,3 кПа; 6 - РН2S = 6,67 кПа
Рисунок 4. Влияние температуры растворимость Н2S в метаноле
1 – при минус 26оС; 2 – при минус 36 оС;
3 – при минус 45 оС; 4 – при мину 60 оС.
Рисунок 5. Изотермы растворимости СО2 в метаноле
в) одновременная осушка от влаги и очистка от тяжелых углеводородов.
Наряду с положительными качествами предлагаемому процессу присущи недостатки:
а) сложность технологической схемы;
б) сравнительно большие потери метанола с очищаемым газом;
в) нежелательно высокая растворимость углеводородов в метаноле, особенно при низких температурах.
0 комментариев