0 < w < 0,13
Доверительный интервал для общего выпуска товаров и услуг
16,2 * 100 < a < 18,6 * 100
1620 < a < 1860 млн. руб.
Доверительный интервал для числа предприятий с объемом выпуска более 40 млн. руб.
0 * 100 < n0 < 0,13 * 100
0< n0 < 13
Генеральная средняя:
= 2312 / 100 = 23,12 млн. руб.
Число предприятий с объемом выпуска более 40 млн. руб. в генеральной совокупности равно:
n0 = 13.
Доля предприятий с объемом выпуска более 40 млн. руб.
w = n0 / N = 13 / 100 = 0,13
Вывод. Средний объем товаров и услуг по 30 предприятиям составляет 17,4 млн. руб. Доля предприятий с объемом товаров и услуг более 40 млн. руб. 6%. Объем товаров и услуг в среднем отклоняется от своего среднего значения на 14,5 млн. руб. С вероятностью 0,954 можно утверждать, что средний объем товаров и услуг заключен между 16,2 и 18,6 млн. руб., а доля предприятий с объемом товаров и услуг более 40 млн. руб. – между 0% и 13%.
Задача 2
На основе 5-процентной пропорционально расслоенной (типической) выборки со случайным отбором единиц в слое получены сведения о вкладах населения района области.
Результаты выборочного наблюдения приведены в таблице
Типы населения | Число вкладов, тыс. ед. | Средний размер вклада, тыс. руб. | Коэффициент вариации вкладов, % |
Городское | 30 | 7 | 12 |
Сельское | 20 | 5 | 21 |
Определите:
1) тесноту связи между типом населения и средним размером вклада, исчислив эмпирическое корреляционное отношение;
2) с вероятностью 0,954 доверительные интервалы, в которых можно ожидать: а) средний размер вклада всего населения района области; б) общую сумму вкладов населения района;
3) как изменится точность средней и предельной ошибок выборки, если предположить, что приведенные данные получены в результате простой случайной бесповторной выборки. Сделайте выводы.
Решение:
1. Расчетная таблица:
ni | xi | Vi | σi | Di | Dini | Xini | Xi - | (Xi - )2 | (Xi - )2ni |
30 | 7 | 12 | 0,84 | 0,7056 | 21,168 | 210 | 0,8 | 0,6 | 19,2 |
20 | 5 | 21 | 1,05 | 1,1025 | 22,05 | 100 | -1,2 | 1,4 | 28,8 |
50 | 43,218 | 310 | 48 |
Коэффициент вариации
V = σ /
Отсюда среднее квадратическое отклонение
σ = V
Внутригрупповая дисперсия
Dвн = ∑ Dini / ∑ ni = 43,218 / 50 = 0,864
Выборочное среднее
= ∑ xini/ ∑ni = 340 / 50 = 6,2
Межгрупповая дисперсия
Dмеж = ∑ (Xi - )2 ni / ∑ ni = 48 / 50 = 0,96
Общая дисперсия
D = Dвн + Dмеж = 0,864 + 0,96 = 1,824
Среднее квадратическое отклонение
σ = = = 1,35
Эмпирическое корреляционное отношение
η = = = 0,725
2.Средняя ошибка
μ = σ / = 1,35 / = 0,19
Предельная ошибка
Δ = tμ = 2 * 0,19 = 0,38,
где t = 2 (при вероятности 0,954).
Доверительный интервал для средней суммы трат
- Δ < a < + Δ,
6,2 – 0,38 < a < 6,2 + 0,38
5,82 < a < 6,58
Доверительный интервал для общей суммы трат
5,82 * 500 < a < 6,2 * 500 руб.
2910,0 < a < 3100,0 руб.
... Доказать: По определению второй смешанной производной. Найдем по двумерной плотности одномерные плотности случайных величин X и Y. Т.к. полученное равенство верно для всех х, то подинтегральные выражение аналогично В математической теории вероятности вводится как базовая формула (1) ибо предлагается, что плотность вероятности как аналитическая функция может не существовать. Но т.к. в нашем ...
... распределения генеральной совокупности F(x) и – эмпирической функция распределения Fn(x) , построенной по выборке х1,…,хn, называется функция. Теорема. Если F(x) непрерывна, то распределения статистики Колмогорова Dn не зависит от F(x). Условные математические ожидания и условные распределения. Св-ва условных мат. ожиданий. Аналоги формул полной вероятности и формулы Байеса для мат. ожиданий ГММЕ ...
... дает возможность статистического моделирования, происходящих в населении процессов. Потребность в моделировании возникает в случае невозможности исследования самого объекта. Наибольшее число моделей, применяемых в статистике населения, разработано для характеристики его динамики. Среди них выделяются экспоненциальные и логистические. Особое значение в прогнозе населения на будущие периоды имеют ...
... на задний план традиционными постановками. Несколько лет назад при описании современного этапа развития статистических методов нами были выделены [29] пять актуальных направлений, в которых развивается современная прикладная статистика, т.е. пять "точек роста": непараметрика, робастность, бутстреп, интервальная статистика, статистика объектов нечисловой природы. Обсудим их. 5. ...
0 комментариев