1. Средняя численность внешних совместителей
ВС = (70 * 7 / 31) + (85*3/31) = 15,8 + 8,23 = 24,03,
где 70 и 85 – их ежедневная численность, 7 и 3 – число дней работы, 31 – число дней в октябре.
Средняя численность работников, выполнявших работу по договорам гражданско-правового характера
ГП = (15 * 3 / 31) + (10 * 3 / 31) = 1,45 + 0,97 = 2,42,
где 15 и 10 – их ежедневная численность, 3 – число дней работы, 31 – число дней в октябре.
2. Среднесписочная численность за октябрь
СЧ10 = (315 + 305 + 317 + 320 + 335 + 335 + 334 + 330 + 325 + 310 + 307) / 31 = 114 чел.
Численность работников в выходные дни принимается равной их численности в последний рабочий день недели.
Среднесписочная численность за ноябрь
СЧ11 = (5859 + 3891) / 30 = 325 чел.
Среднесписочная численность за декабрь
СЧ12 = 320 чел.,
Среднесписочная численность за год
СЧ = (31 * СЧ10 + 30 * СЧ11 + 31 * СЧ12) / 365 = (31 * 114 + 30 * 325 + 31 * 320) / 365 = 63,6 чел.,
где 31, 30, 31 – число дней в октябре, ноябре и декабре, 365 – число дней в году.
Выводы: основная часть персона – постоянные работники, первые месяцы численность персонала изменилась почти в 3 раза, затем сократилась на 5 человек.
Задача 8По субъекту Федерации имеются следующие данные, млрд. руб.:
Основные фонды по полной стоимости на начало года 300
Степень износа основных фондов на начало года, %30
Введено новых основных фондов за год50
Выбыло основных фондов по полной стоимости30
Остаточная стоимость выбывших основных фондов, %45
Сумма начисленного износа за год25
Затраты на капитальный ремонт за год18
Определите:
1) полную восстановительную стоимость на конец года;
2) восстановительную стоимость за вычетом износа на начало и конец года;
3) коэффициенты годности основных фондов на начало и конец года;
4) коэффициент износа основных фондов на конец года;
5) коэффициенты обновления и выбытия основных фондов.
6) Постройте балансы основных фондов по полной восстановительной стоимости за вычетом износа. Сделайте выводы.
Решение
Полная восстановительная стоимость на конец года = 581 + 50 = 631 млн. руб.
Восстановительная стоимость основных фондов с учетом износа на начало года
ВС0 = ОФ0 * (1 – И / 100) = 830 * (1 – 30 / 100) = 581 млн. руб.,
где ОФ – полная восстановительная стоимость основных фондов, И – износ.
Полная восстановительная стоимость на конец года
ОФ1 = 830 – 24 – 35 + 60 + 120 = 951 млн. руб.
Восстановительная стоимость с учетом износа на конец года
ВС1 = 581 – 24 * 75 / 100 – 35 * 92 / 100 + 52 + 120 = 702,8 млн. руб.
Коэффициент обновления основных фондов
Ко = ОФвв / ОФ1 = (60 + 120) / 951 = 0,189,
где ОФвв – стоимость введенных основных фондов.
Коэффициент выбытия
Кв = ОФвыб / ОФ0 = (24 + 35) / 830 = 0,071,
где ОФвыб – стоимость выбывших основных фондов.
Среднегодовая стоимость основных фондов
ОФ = (830 * 2 + 890 * 1 + 866 * 2 + 986 * 3 + 951 * 4) / 12 = 920,3 млн. руб.
Фондовооруженность
ФВ = ОФ / ЧР = 920,3 / 900 = 1,023,
где ЧР – среднегодовая численность рабочих.
Фондоотдача
ФО = В / ОФ = 6 / 920,3 = 0,00652,
где В – выпуск товаров и услуг.
Выводы. Восстановительная стоимость основных фондов (как полная, так и с учетом износа) в течение года увеличилась. Основные фонды обновились на 18,9%. Выбыло 7,1% основных фондов. Фондовооруженность составила 1,023, фондоотдача – 0,00652.
Задача 9За отчетный период имеются данные о распределении домохозяйств региона по размеру среднедушевых денежных доходов:
Среднедушевой денежный доход, руб. | Число домохозяйств, % | Численность населения, % |
До 800 | 6,5 | 7,5 |
800-1200 | 29,3 | 23,4 |
1200-1600 | 21,6 | 21,7 |
1600-2000 | 11,4 | 13,5 |
2000-2400 | 9,1 | 8,4 |
2400-2800 | 8,3 | 7,3 |
2800-3200 | 7,0 | 6,7 |
3200-3600 | 3,1 | 2,5 |
3600 и более | 3,7 | 9,0 |
Итого | 100,00 | 100,0 |
Справочно: Общее число домохозяйств в регионе составляет 806,5 тыс. Одно домохозяйство в среднем состоит из 3,2 лица.
Определите:
1) среднедушевой месячный доход населения региона;
2) модальные и медианные размеры среднедушевых месячных доходов населения региона;
3) показатели дифференциации и концентрации доходов населения региона: а) децильный коэффициент; б) коэффициент К. Джинни; в) коэффициент Херфиндаля-Хиршмана.
4) численность населения региона, имеющего доход ниже прожиточного минимума, установленного в отчетном периоде в размере 1530 руб.
5) уровень бедности в регионе. Постройте кривую М. Лоренса.
6) Сделайте выводы об уровне доходов населения региона и их концентрации.
Решение:
Найдем середины интервалов денежных доходов:
800 – (1200 – 800) / 2 = 600 руб.
(800 + 1200) / 2 = 1000 руб. и т.д.
3600 + (3600-3200)/2 = 3800
Интервалы | Середины интервалов xi | Численность населения mi | Число домохозяйств ni | ximi | xini | Доля насел. | Доля домохозяйств | Доля доходов населения | Доля доходов домохозяйств |
До 800 | 600 | 194 | 52,4 | 116160 | 31440 | 0,08 | 0,06 | 0,025 | 0,023 |
800 – 1200 | 1000 | 604 | 236,3 | 603900 | 236300 | 0,23 | 0,29 | 0,128 | 0,171 |
1200 – 1600 | 1400 | 560 | 174,2 | 784000 | 243880 | 0,22 | 0,22 | 0,166 | 0,177 |
1600 – 2000 | 1800 | 348 | 91,9 | 627120 | 165420 | 0,13 | 0,11 | 0,133 | 0,120 |
2000 – 2400 | 2200 | 217 | 73,4 | 476960 | 161480 | 0,08 | 0,09 | 0,101 | 0,117 |
2400 – 2800 | 2600 | 188 | 66,9 | 489840 | 173940 | 0,07 | 0,08 | 0,104 | 0,126 |
2800 - 3200 | 3000 | 173 | 56,5 | 518700 | 169500 | 0,07 | 0,07 | 0,110 | 0,123 |
3200 – 3600 | 3400 | 65 | 25,0 | 219300 | 85000 | 0,02 | 0,03 | 0,046 | 0,062 |
3600 и более | 3800 | 232 | 29,8 | 882740 | 113240 | 0,09 | 0,04 | 0,187 | 0,082 |
Итого | - | 2581 | 806,5 | 4718720 | 1380200 |
1) Среднедушевой денежный доход населения региона:
= ∑ ximi/ ∑mi = 4718734,7 / 2581 = 1828,4 руб.
2) Модальный интервал для численности населения (800; 1200), так как
max (194; 604; 560; 348; 217; 188; 173; 65; 232) = 604
Мода
Мо0 = xo + h (nmo – nmo – 1) / (2nmo – nmo – 1 – nmo + 1) = 800 + 400 * (604 – 194) / (2 * 604 – 194 – 560) = 1161,2 руб.,
где h = 1200 – 800 = 400 – длина модального интервала, nmo, nmo – 1, nmo + 1 – частоты модального, предмодального и послемодального интервалов.
Номер медианы для численности населения
(N + 1) / 2 = (2581 + 1) / 2 = 1291
Медианный интервал (1200; 1600), так как
194 + 604 = 798 < 1291
194 + 604 + 560 = 1358 > 1291
Медиана
Ме0 = xe + h ((N + 1) / 2 – Sme – 1) / nme = 1200 + 400 * (1297 – 798) / 560 = 1556,4 руб.,
где xe – начало медианного интервала, Sme – 1 – накопленная частота предмедианных интервалов, nme – частота медианного интервала.
1) А) Децильный коэффициент
194 < 2581 * 0,1 = 258,1
194 + 604 =798 > 258,1
Нижний децильный интервал (800, 1200).
Нижняя дециль
Дн = 800 + 400 * (258,1 – 194) / 604 = 842,5 руб.
2581 – 232 = 2349 > 2581 * 0,9 = 2323
2581 – 232 – 65 = 2284 < 2323
Верхний децильный интервал (3200, 3600)
Верхняя дециль
Дв = 3600 – 400 * (2349 – 2323) / 65 = 3760 руб.
Децильный коэффициент
Кд0 = Дв / Дн = 3760 / 842,5 = 4,463
Б) Коэффициент Джини:
G = ,
где cum уi — кумулятивная доля дохода.
Интервалы | Доля насел. xi | Доля доходов yi | Кумул. доля доходов cum yi |
До 800 | 0,08 | 0,025 | 0,025 |
800 – 1200 | 0,23 | 0,128 | 0,153 |
1200 – 1600 | 0,22 | 0,166 | 0,319 |
1600 – 2000 | 0,13 | 0,133 | 0,452 |
2000 – 2400 | 0,08 | 0,101 | 0,553 |
2400 – 2800 | 0,07 | 0,104 | 0,657 |
2800 - 3200 | 0,07 | 0,110 | 0,766 |
3200 – 3600 | 0,02 | 0,046 | 0,813 |
3600 - 4000 | 0,09 | 0,187 | 1,000 |
Население:
G0 = 1 – 2 * (0,08 * 0,025 + 0,23 * 0,153 + 0,22 * 0,319 + 0,13 * 0,452 + 0,08 * 0,553 + 0,07 * 0,657 + 0,07 * 0,766 + 0,02 * 0,813 + 0,09 * 1,000) + 0,08 * 0,025 + 0,23 * 0,128 + 0,22 * 0,166 + 0,13 * 0,133 + 0,08 * 0,101 + 0,07 * 0,104 + 0,07 * 0,110 + 0,02 * 0,046 + 0,09 * 0,187 = 0,280
в) коэффициент Херфиндаля-Хиршмана
К=0,08*0,08+0,23*0,23+0,22*0,22+0,13*0,13+0,08*0,08 +0,07*0,07+0,07*0,07+0,02*0,02+0,09*0,09 = 1
2) Численность населения, имеющего доход ниже прожиточного минимума (1530 руб):
Б0 = 194 + 604 + 560 * (1530 – 1200) / 400 = 1260 тыс. чел.
3) Уровень бедности
УБ = Б / ЧН * 100
УБ0 = 1260 / 2581 * 100 = 48,8%
Кривая Лоренца:
Выводы. Децильный коэффициент увеличился. Коэффициент Джини увеличился, т.е. дифференциация населения по уровню доходов возросла. Уровень бедности увеличился в 2 раза.
1) Громыко Г.Л. Статистика. – М.: МГУ, 2001.
2) Гусарев В.М. Теория статистики. – М.: ЮНИТИ, 2002.
3) Елисеева И.И., Юзбашев М.М. Общая теория статистики / Под ред. чл.-корр. РАН И.И. Елисеевой. - М., 1998.
4) Ефимова М.Р. и др. Общая теория статистики: Учебник. – М.: ИНФРА-М, 2003.
5) Ефимова М.Р., Киперман Г.Я. Сборник задач по теории статистики. – М.: Финансы и статистика, 2002.
6) Ефимова М.Р., Петрова Е.В., Румянцев В.Н. Общая теория статистики. М, 2000.
7) Экономическая статистика: Учебник / Под ред. Е.Н. Фреймундт, М.Р. Эйдельмана. – М.: Статистика, 2003.
... Доказать: По определению второй смешанной производной. Найдем по двумерной плотности одномерные плотности случайных величин X и Y. Т.к. полученное равенство верно для всех х, то подинтегральные выражение аналогично В математической теории вероятности вводится как базовая формула (1) ибо предлагается, что плотность вероятности как аналитическая функция может не существовать. Но т.к. в нашем ...
... распределения генеральной совокупности F(x) и – эмпирической функция распределения Fn(x) , построенной по выборке х1,…,хn, называется функция. Теорема. Если F(x) непрерывна, то распределения статистики Колмогорова Dn не зависит от F(x). Условные математические ожидания и условные распределения. Св-ва условных мат. ожиданий. Аналоги формул полной вероятности и формулы Байеса для мат. ожиданий ГММЕ ...
... дает возможность статистического моделирования, происходящих в населении процессов. Потребность в моделировании возникает в случае невозможности исследования самого объекта. Наибольшее число моделей, применяемых в статистике населения, разработано для характеристики его динамики. Среди них выделяются экспоненциальные и логистические. Особое значение в прогнозе населения на будущие периоды имеют ...
... на задний план традиционными постановками. Несколько лет назад при описании современного этапа развития статистических методов нами были выделены [29] пять актуальных направлений, в которых развивается современная прикладная статистика, т.е. пять "точек роста": непараметрика, робастность, бутстреп, интервальная статистика, статистика объектов нечисловой природы. Обсудим их. 5. ...
0 комментариев