9. Сколько железнодорожных платформ потребуется для перевозки 183 контейнеров, если на одной платформе можно разместить не более 5 контейнеров.

10. Одна сторона треугольника равна 8 см., другая – 13см.

1)          каким наименьшим целым числом сантиметров может быть длина третьей стороны?

2)          каким наибольшим целым числом сантиметров может быть длина третьей стороны?

11.При каких значениях х точки графика функции у=3х+1.5 лежат выше точек графика функции у=-2х+1.

 

§3 Формирование алгоритма « Решение неравенств второй степени с одним неизвестным»

Цель:

·           выработать умение решать неравенства второй степени с одним неизвестным и системы квадратных неравенств.

Решение квадратных неравенств – это традиционно обособленная часть исследования свойств квадратичной функции. Например, задача о решении неравенства х2-5х+6<0 может быть переформулирована в задачу о нахождении промежутков, на которых функция у =х2-5х+6 принимает отрицательные значения, а это легко решается с помощью эскиза графика. Этот способ фактически является строгим обоснованием графического способа.

Метод интервалов является логическим продолжением решения квадратных неравенств. Он позволяет решать более сложные неравенства, у которых левая часть – многочлен любой степень, представляемый в виде простых множителей, или дробь, у которой числитель и знаменатель также многочлены, разлагаемые на множители.

В результате изучения темы учащиеся должны уметь:

·     решать квадратные неравенства с одной неизвестной графически и методом интервалов

Специфические действия:

1.            Привидение неравенства к квадратному виду.

2.            Решение квадратных уравнений.

3.            Построение графиков функций (схематично).

4.            Выполнение тождественных преобразований.

5.            Определение знака выражения на соответствующих промежутках.

6.            Алгоритм решения квадратных неравенств с одной переменной.

«Ядерным» материалом темы является:

1. Понятия «< » , « > » неравенство, решение неравенства решение системы неравенств, равносильных неравенств;

2. Свойства числовых неравенств, равносильных неравенств;

3. Алгоритм решения квадратных неравенств с одной переменной и решения системы неравенств.

4. Свойства графика квадратичной функции.

Рассмотрим работу с алгоритмом решения неравенств второй степени (графически) поэтапно. На первом этапе полезно актуализировать знания: нахождение корней квадратного трёхчлена, дискриминанта, изображение графиков квадратичных функций (схематично). После этого формулируем сам алгоритм. На втором этапе отрабатываем отдельные операции, входящие в алгоритм: изображение графиков функций, нахождение при каких значениях х функция принимает положительные, а при каких отрицательные значения. На третьем этапе применяем алгоритм при решении более сложных задач.

I. Введение алгоритма.

Рассмотрим введение алгоритма “решение неравенств второй степени с одним неизвестным” (графическим методом) с использованием обучающих самостоятельных работ.

 1.Актуализация знаний

Обучающую самостоятельную работу проводим по новому материалу,

 
 
но перед этим повторим ранее изученные понятия, которыми придётся воспользоваться.

1. у у у

 

а) Куда направлены ветви параболы?

b) Пересекает ли парабола ось ох, если да то сколько раз?

с) При каких х парабола принимает положительные значения?

d) При каких х парабола принимает отрицательные значения?

2. Изобразите схематично график функции.

·  у=х2+5х-6

·  у=-х2+4х-4

·  у=3х2+4х+8

·  у=0,1х2+3х-6

3. Изобразите схематично параболу, которая на

·  промежутке (-∞;-3] убывает, а на промежутке [-3;+ ∞) возрастает;

·  промежутке (-∞;6] возрастает, а на промежутке [6;+ ∞) убывает;

4. При каких значениях х , функция принимает положительные значения

·  f(x)=-x2+4x-2;

·  f(x)=3х2+2х-1;

5. При каких значениях х , функция принимает отрицательные значения

·  f(x)=-х2+4х-1;

·  f(x)=4x2+2x-1;

2. Открытие алгоритма учащимися под руководством учителя.

 После этого начинается работа с объяснительным текстом. Каждый ученик самостоятельно изучает этот текст. Это предполагает активную работу мысли ученика. Текст составлен таким образом, чтобы учащиеся в меру возможностей самостоятельно выводили формулы, находили нужные приёмы решения задачи.

Если в левой части неравенства стоит квадратный трёхчлен, а в правой – нуль, то такое неравенство называют квадратным. Например, неравенства

 2х2-3х+1≥0, -3х2+4х+5<0 являются квадратными.

Решением неравенства с одним неизвестным называется то значение неизвестного, при котором это неравенство обращается в верное числовое неравенство.

Решить неравенство – найти все его решения или установить, что их нет.

Решение неравенства второй степени с одной переменной можно рассматривать как нахождение промежутков, на которых соответствующая квадратичная функция принимает положительные и отрицательные значения.

Например, решим с помощью свойств графика квадратичной функции неравенство 2х2-х-1≤0

График квадратичной функции у=2х2-х-1 – парабола, ветви которой направлены вверх.

Найдём точки пересечения этой параболы с осью ох, для этого решим квадратное уравнение 2х2-х-1=0. Корни уравнения х1=1, х2=-0.5

Следовательно парабола пересекает ось ох в точках х1=1, х2=-0.5

Покажем схематично как расположена парабола в координатной плоскости.

 

 

 


-0.5

 
х

Из рисунка видно, что неравенству 2х2-х-1≤0 удовлетворяют те значения х, при которых значения функций равны нулю или отрицательны то есть те значения х при которых точки параболы лежат на оси ох или ниже этой оси. Из рисунка видно, что этими значениями являются все числа из отрезка

 [-0.5;1].

Ответ: -0.5≤х≤1

График этой функции можно использовать и при решении других неравенств, которые отличаются от данного только знакомом неравенства, из рисунка видно, что:

1) решениями неравенства 2х2-х-1 < 0 являются числа интервала -0.5<х<1

2) решениями неравенства 2х2-х-1 > 0 являются все числа промежутков

 х<-0.5 и х>1.

3) решениями неравенства 2х2-х-1 ≥ 0 являются все числа промежутков

х ≤-0.5 и х ≥ 1.

После работы с объяснительным текстом учащиеся получают «нулевые» задания. Они предназначены для самоконтроля и к ним предлагаются правильные ответы. Если ответы учеников не совпали с данными ответами, то придётся повторно прочитать объяснительный текст и снова выполнить «нулевые» задания, устранив ошибки.

 10 Решите неравенства:

а) 4х2-5х+6х<0,2(10х2+15)


Информация о работе «Применение алгоритмического метода при изучении неравенств»
Раздел: Педагогика
Количество знаков с пробелами: 59195
Количество таблиц: 4
Количество изображений: 13

Похожие работы

Скачать
68461
2
2

... и содержательного обобщения свойств изучаемого предмета в форме учебного диалога. В процессе написания работы была проанализирована психолого- педагогическая и методическая литература по теме «Использование учебников математики при изучении табличного умножения и деления на 2 и 3», а также содержание учебных программ по математике, были сравнены учебники по математике Л.Г. Петерсон и М.И. Моро, ...

Скачать
37778
0
2

... на основе знания связи между результатом и компонентами арифметических действий (т.е. знания способов нахождения неизвестных компонентов). Эти требования программы определяют методику работы над уравнениями. 2. Методика изучения неравенств в старших классах 2.1 Содержание и роль линии уравнений и неравенств в современном школьном курсе математики Ввиду важности и обширности материала, ...

Скачать
71353
14
13

... и практическое использование различных форм уроков математики Для того чтобы доказать или опровергнуть, что использование различных форм уроков способствует улучшению качества знаний школьников по теме "Квадратные уравнения", были разработаны и проведены разнообразные формы уроков в 8 классе МОУ “Иштеряковская средняя общеобразовательная школа". При изучении темы были выбраны такие формы ...

Скачать
158228
4
0

... механизма для обеспечения эффективного перехода на различные способы транспортирования в зависимости от свойств материала и выполняемой технологической операции. Разработке методов кинематического анализа механизмов транспортирования ткани швейных машин и соответствующего этой задаче алгоритмического и программного обеспечения посвящены работы. [67],[71],[72]. В работе Ю.Ю.Щербаня и В.А.Горобца ...

0 комментариев


Наверх