1. Решите неравенство.

1)

2)

3)

4)

2. Найдите общее решение х2+6х-7 ≤ 0 и х2-2х-15 ≤ 0

3.Решите систему неравенств.

1)

2)

3)

4.Катер должен не более чем за 4 часа пройти по течению реки 22,5км и вернуться обратно. С какой скоростью относительно воды должен идти катер, если скорость течения равна 3км/ч.

5.Решите неравенство методом интервалов.

 1)

 2)

 3)

6.Решите неравенство.

 1)

 2)

 3)


§4 Опытное преподавание.

Факультативное занятие в девятом классе (решение неравенств с параметром первой степени с одной неизвестной).

Цель:

применить алгоритмический метод при формировании умений и навыков в решении линейных неравенствах с параметрами.

Задачи:

·          расширить кругозор учащихся;

·          воспитание внимания, аккуратности, самостоятельности;

·          осуществление взаимосвязи теории и практики;

·          развитие памяти, логического мышления.

 Решение задач с параметрами всегда вызывает большие трудности у учащихся. Причём часто учащиеся испытывают психологические трудности, «боятся» таких задач, так как не видят связи в их решении с решениями линейных неравенств с одной переменной.

 Изучение линейных неравенств с параметром первой степени с одной неизвестной не возможно без умения решать линейные неравенства с одной переменной. Так как факультатив проводился в 9 классе, а линейные неравенства изучались в восьмом классе, то возникла необходимость актуализировать знания по решению линейных неравенств, вспомнить этапы их решения. Ученикам можно предложить следующее задание.

Решите неравенство 2(х+5)-3≥4+3х

 Все решают у себя в тетрадях, а один ученик решает у доски. Запись ведёт в два столбика. Решение в одном столбика, а в другом записывают пояснения к своим действиям.

 

2х+7≥4+3х Раскрыли скобки в обеих частях неравенства

2х-3х≥4-2 Перенесли слагаемые, содержащие переменную в одну

часть, а не содержащую в другую.

-х≥2 Привели подобные члены в каждой части.

х≤-2 Разделили обе части неравенства на коэффициент при

переменной (учитывая его знак !).

Отметили соответствующие промежутки на

координатной прямой.

х(-∞;-2] Записали числовой промежуток

После того как повторили этапы решения линейных неравенств с одной переменной, учитель предлагает на доске подробный разбор решения неравенства с параметром. Затем ученики вместе с учителем формулируют алгоритм решения линейных неравенств с параметром.

Пример 1. Рассмотрим решение неравенства (а-4)∙х<12

Чтобы найти х, обе части неравенства хочется разделить на (а-4). Однако теперь важно положительно, отрицательно или равно нулю выражение (а-4).

Определим знак выражения

(а-4)

 

а

 

4

 

Рассмотрим три случая:

a)    а-4=0

b)    а-4>0

c)     а-4<0

1)если а-4=0а=4, то неравенство примет вид 0х<12, которое справедливо для всех хR

2) a-4>0 a>4, то разделим обе части неравенства на положительное выражение (а-4), не меняя знак неравенства, получим х > (используем свойство числового неравенства).

3) a-4<0a<4, то разделив обе части неравенства на отрицательное выражение и поменяв знак неравенства, получим х<.

Ответ:

если а=4, то х R;

если а>4, то х >;

если а<4, то х<.

Таким образом, после разобранного примера учитель формулирует алгоритм, опираясь на знания и умения, учащихся о решении линейных неравенств с одной переменной.

1.          Раскрыть скобки в обеих частях неравенства (если есть дробные коэффициенты, то неравенство освободить от дробей).

2.       Перенести слагаемые, содержащие переменную в одну часть, а не содержащие в другую.

3. Привести подобные члены в каждой части и получить один из 4 видов неравенств А(а)х<B(a) (**) , А(а)х≤B(a), А(а)х>B(a), А(а)х≥B(a), где х- переменная, А(а) и В(а) – функции параметра а.

4. Рассмотреть три случая:

1) Найти а, при которых А(а)=0, подставить в неравенство(**) вместо параметра а найденные решения и решить соответствующие неравенства.

2) Найти а, при которых А(а)>0, разделить неравенство(**) на А(а), не меняя его знак.

3) Найти а, при которых А(а)<0, разделить неравенство(**) на А(а), поменяв его знак.


Информация о работе «Применение алгоритмического метода при изучении неравенств»
Раздел: Педагогика
Количество знаков с пробелами: 59195
Количество таблиц: 4
Количество изображений: 13

Похожие работы

Скачать
68461
2
2

... и содержательного обобщения свойств изучаемого предмета в форме учебного диалога. В процессе написания работы была проанализирована психолого- педагогическая и методическая литература по теме «Использование учебников математики при изучении табличного умножения и деления на 2 и 3», а также содержание учебных программ по математике, были сравнены учебники по математике Л.Г. Петерсон и М.И. Моро, ...

Скачать
37778
0
2

... на основе знания связи между результатом и компонентами арифметических действий (т.е. знания способов нахождения неизвестных компонентов). Эти требования программы определяют методику работы над уравнениями. 2. Методика изучения неравенств в старших классах 2.1 Содержание и роль линии уравнений и неравенств в современном школьном курсе математики Ввиду важности и обширности материала, ...

Скачать
71353
14
13

... и практическое использование различных форм уроков математики Для того чтобы доказать или опровергнуть, что использование различных форм уроков способствует улучшению качества знаний школьников по теме "Квадратные уравнения", были разработаны и проведены разнообразные формы уроков в 8 классе МОУ “Иштеряковская средняя общеобразовательная школа". При изучении темы были выбраны такие формы ...

Скачать
158228
4
0

... механизма для обеспечения эффективного перехода на различные способы транспортирования в зависимости от свойств материала и выполняемой технологической операции. Разработке методов кинематического анализа механизмов транспортирования ткани швейных машин и соответствующего этой задаче алгоритмического и программного обеспечения посвящены работы. [67],[71],[72]. В работе Ю.Ю.Щербаня и В.А.Горобца ...

0 комментариев


Наверх