9. Измерение теплового облучения

Для измерений интенсивности теплового облучения применяют радиометры с углом видимости приемника не менее 160о и чувствительностью в инфракрасной и видимой областях спектра. Одним из них является радиометр Argus–03 (рис. 8.4). Это цифровой прибор с широким диапазоном измерений лучистой энергии. Его применение целесообразно на рабочем месте кузнеца, машиниста котельной установки, а также в помещениях теплопунктов.

Методы измерения и контроля этого параметра микроклимата аналогичны приемам при измерении температуры воздуха, а положение точек над уровнем пола указано в табл. 9.1.

Для измерения интенсивности теплового облучения (Вт/м2) может использоваться радиометр Argus–03 отечественного производства (рис. 9.1). Это – компактный прибор с батарейным питанием и углом видимости приемника не менее 160о.

Автоматизированные системы измерения ТНС–индекса (WBGT– индекса по международному стандарту ISO 7243) могут быть как одно-, так и многоканальные. Они позволяют измерять необходимые для расчета параметры параллельно в трех точках и выдавать результат на встроенный дисплей и/или на принтер.

Таблица 9.1
Положение оператора Высота от пола

a

b

c

Стоя 0,1 1,1 1,7
Сидя 0,1 0,6 1,1

Одноканальный комплект фирмы Брюль и Къер (Дания) показан на рис. 9.3. Комплект датчиков типа ММ 0030 включает шаровой термометр 1, сухой 2 и влажный 3 термометры. Влажный термометр имеет емкость, заполненную дистиллированной водой. Измерительный прибор, выполненный по компьютерной технологии, и выдает результат без вмешательства оператора.

Трехканальная конфигурация этого прибора позволяет определить ТНС–индекс, включая взвешенный показатель. Для этого достаточно перед измерениями задать режим работы измерительного прибора.

Блок схема 3–х канального комплекса приведена на рис. 9.5. Такая комплектация позволяет одновременно измерять значение WBGT–индекса в рассмотренных точках и рассчитывать взвешенный показатель

Рис. 9.5 Блок-схема 3–х канального прибора


10. Проведение сертификационных испытаний

 

Порядок проведения испытаний рассмотренных параметров различных режимов воздушной среды установлен стандартом системы сертификации на федеральном железнодорожном транспорте СТ ССФЖТ ЦТ–ЦП 129–2002[2]. Стандарт предусматривает оценку параметров микроклимата, как в кабине машиниста подвижного состава, так и в салонах и служебных помещениях при проведении сертификационных испытаний. Для реализации требований сертификации стандартом устанавлены методические требования по оценке следующих показателей (табл. 10.1):

1.         коэффициента теплопередачи ограждений;

2.         коэффициента герметичности;

3.         эффективности системы подогрева;

4.         эффективности системы охлаждения;

5.         подпор воздуха (избыточное давление);

6.         колическтво наружного воздуха, подаваемого в помещение (инфильтрация).

10.1 Сертификация показателя «Коэффициент теплопередачи ограждений»

 

Для поддержания оптимального температурного режима в кабине машиниста необходимо знать коэффициент теплопередачи ограждений:

где Q – тепловой поток

Таблица 10.1

Показатели, характеризующие микроклимат

Показатель Вид показателя
Оценочный Измеряемый
Коэффициент теплопередачи ограждений

средний коэффициент теплопередачи, Вт/м2К

мощность обогревателей, кВт;

температура воздуха, °С

Коэффициент

герметичности

температурный коэффициент герметичности (ч·град)–1;

скоростной коэффициент герметичности, (ч·км/ч)–1

температура воздуха, °С;

относительная влажность, %;

скорость движения объекта, км/ч

Эффективность

системы подогрева

перепад температур, °С;

время достижения заданной температуры, мин;

точность поддержания температуры, °С

температура воздуха, °С;

скорость ветра, м/с;

скорость движения объекта, км/ч;

время нагрева до заданной температуры, мин

Эффективность

системы

охлаждения

перепад температур, °С;

время достижения заданной температуры, мин;

точность поддержания температуры, °С

температура воздуха, °С;

скорость воздуха, м/с;

скорость движения объекта, км/ч

Подпор воздуха (избыточное

давление)

избыточное давление, Па нет

Колическтво

наружного воздуха, подаваемого в

помещение

(инфильтрация)

количество наружного воздуха, подаваемого на 1 человека, м3

скорость воздуха, м/с;

площадь вентиляционного проема, м2

Установленные стандартом показатели должны измеряться в определенных точках в зависимости от сертифицируемого объекта. При этом объекты классифицируются по площади помещения: до 12 м2 и свыше. В обоих случаях точки располагаются в трех сечениях горизонтальной и вертикальной плоскостях. К первым относятся кабины машиниста, схема расположения точек измерения для которых показана на рис. 10.1.

Измеряемыми показателями являются:

·        мощность электрообогревателей, кВА;

·        температура воздуха, °С

¾        в помещении объемом до 12 м3 в 9-ти точках, а при объеме более 12 м3 – в 18 точках;

¾        в цехе с двух сторон от объекта на уровне 1,5 м от пола;

·          площадь ограждения (внутренняя и внешняя).

Порядок проведения испытаний

Испытываемый объект (например, локомотив) устанавливают в помещении и прогревают до температуры окружающего воздуха. Затем в кабине размещают электрообогреватели мощностью 0,8–1,0 кВт в расчете на каждые 10 м3 помещения.

Внутри кабины равномерно размещают в 9–18 точках (в зависимости от объема) термодатчики измерительной аппаратуры по схеме (рис.10.1 и 10.2). Собирают измерительный комплекс температур и расхода электроэнергии.

Процесс испытания делят на два периода – период предварительного прогрева кабины и период непосредственного проведения измерений при достижении стационарного температурного режима. Продолжительность прогрева помещения должна составлять не менее 8–12 часов. В этот период ведут запись всех температур с целью определения момента выхода на стационарный режим.

Когда изменение показаний термодатчиков изменяются в пределах ±1,0°С, начинают регистрацию показаний всех приборов с интервалом 15 мин в течение 1–2 часа.


Рис. 10.1. Места установки датчиков температуры воздуха в помещениях площадью до 12 м2.

 

Вид сбоку

 

Вид сверху

 


Рис. 10.2. Места установки датчиков температуры воздуха в помещениях площадью более 12 м2

 

Обработка результатов

Средний коэффициент теплопередачи ограждения К вычисляют по формуле (Вт/м2·К):

 

К= ,  (1)

где Q – тепловой поток, проходящий через ограждение помещения, Вт,

 

Q= I·U, Вт (2)

где I, U – соответственно, ток А и напряжение В в цепи питания электрообогревателей; Dtср – средний перепад температур воздуха в испытываемом помещении относительно наружного (в депо), оС;

Dtср = tвн –tн,;  (3)

tвн = ,  (4)

где j – точка замера; tj – температура воздуха в j-ой точке помещения; m – количество точек измерения; n – количество измерений по времени при установившемся температурном режиме.

 

 tн = , (5)

где tn1, tn2 – наружная температура в точках 1 и 2; Fср – средняя площадь ограждения помещений, м2.

 Fср= ,  (6)

где Fн и Fвн – площадь наружных и внутренних ограждений, м2.

Погрешность испытаний

Точность полученного путем вычислений среднего коэффициента теплопередачи ограждений помещения выражается интервалом, в котором с вероятностью 0,95 находится искомый результат, т.е.

 

Р = (`К – DК< К< К + DК) = 0,95, (7)


где р – надежность получения результата, Р= 95% (0,95); `К – средний коэффициент теплопередачи ограждений помещения из n измерений:

 

К =  ,  (8)

 

n – количество повременных измерений, идущих в зачет; ki – результат вычисления коэффициента теплопередачи в каждый момент времени; DК – доверительный интервал:

 (9)

 

ta,n–1 – коэффициент Стьюдента, который зависит от объема выборки (n) и доверительной вероятности (p=1–a); SK – среднеквадратическое отклонение результата вычисления коэффициента теплопередачи ограждений помещения:

 

SK =  , (10)

SDt – суммарное среднеквадратическое отклонение результата перепада температур воздуха в помещении относительно наружного;

SDt = , (11)

S′Dt – систематическая погрешность прибора по измерению температуры; S″Dt – случайная погрешность измерения


(12)

 

SF – суммарное среднеквадратическое отклонение результата измерений средней площади ограждения помещения:

 

SF = , (13)

DС – погрешность одного линейного измерения; m – количество линейных измерений; SQ – суммарное среднеквадратическое отклонение результата измерения мощности электрообогревателя, установленного в помещении;

 

SQ = , (14)

 

S'Q – систематическая погрешность измерительного прибора:

 

S′Q = , (15)

 

Qвп – верхний предел измерения прибора; Кл – класс точности измерительного прибора; Qi – результат повременного измерения

 

S″Q = (16) (17)

В случае, если погрешность испытаний превышает приписанную методике испытаний 0,05 Вт/м2·К, испытания проводят повторно.

Средний коэффициент теплопередачи ограждений помещения оценивают удовлетворительно, если он меньше или равен нормативному значению. В противном случае его оценивают неудовлетворительно.


Информация о работе «Сертификация систем обеспечения микроклимата»
Раздел: Безопасность жизнедеятельности
Количество знаков с пробелами: 100339
Количество таблиц: 22
Количество изображений: 19

Похожие работы

Скачать
442965
6
19

... ГОСТ Р. Техническими регламентами II уровня являются: государственные и межгосударственные стандарты (далее — государственные стандарты), содержащие обязательные требования; правила по стандартизации, метрологии, сертификации; общероссийские классификаторы. Нормативные документы III уровня представлены стандартами, сфера применения которых ограничена, определенной отраслью народного хозяйства ...

Скачать
124534
37
9

... подвижный образ жизни - для деловой женщины. Основанием для разработки проекта послужило задание ГУППУ на тему: "Разработка проектно- конструкторской документации женского комплекта нарядно-повседневного назначения для средней возрастной группы" (с изготовлением изделия). Обоснование выбора темы послужило – разработка женского комплекта нарядно – повседневного назначения с использование ...

Скачать
310716
12
0

... -текущих планов мероприятий – до исполнения. -перспективных планов мероприятий – 5 лет. Выводы по разделу 1. В первом разделе были рассмотрены теоретические основы управления качеством, являющимися базовыми при разработке системы управления качеством. Был затронут международный опыт данной деятельности. При работе над первым разделом была рассмотрена и представлена в разделе, процедура получения ...

Скачать
568458
20
78

... для реализации системы бюджетирования Консультационной группы "Воронов и Максимов". Статья о проблемах выбора системы бюджетирования - в проекте "УПРАВЛЕНИЕ 3000". Бюджетный автомат Если вы решитесь на автоматизацию системы бюджетирования компании, перед вами сразу встанут вопросы: что выбрать, сколько платить, как внедрять. Примеряйте! О ЧЕМ РЕЧЬ В “Капитале” на стр. 44, 45 мы рассказали ...

0 комментариев


Наверх